
M.Sc. Mathematics

MAL-516

Programming with FORTRAN

(Theory)

GUR

U
JA

M
B

E
S

H
W

A
R

UNIV
ERSITY OF SCIENC

E
&

T E
C

H
N

O
LO

GY

Directorate of Distance Education
Guru Jambheshwar University of Science &

Technology. HISAR-125001

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 2 |

CONTENTS

Author: Dr.Sandeep Dalal (Assistant Professor)

 Dept.of Computer Science & Applications

 M.D.University Rohtak.(Haryana)

Vetter: Prof. Sunita Rani,

 Department of Mathematics,

 GJUS&T Hisar

Coordinator: Dr Vizender Singh

 Assistant Professor & Programme Coordinator (M.Sc. Mathematics)

 Directorate of Distance Education, GJUS&T Hisar

Chapter

No.

Chapter Name Writer Vetter Page No.

1 Computer Fundamentals

Dr.Sandeep Dalal Prof.Sunita Rani 1-30

2 Steps to Solve a

Mathematical Problem with

Computer

Dr.Sandeep Dalal Prof.Sunita Rani 31-55

3 Basic Concepts of Fortran Dr.Sandeep Dalal Prof.Sunita Rani 56-85

4 Input and Output Statements

Dr.Sandeep Dalal Prof.Sunita Rani 86-112

5 Control Structure

Dr.Sandeep Dalal Prof.Sunita Rani 113-138

6 Operators and expressions Dr.Sandeep Dalal Prof.Sunita Rani 139-160

7 Arrays & String

Dr.Sandeep Dalal Prof.Sunita Rani 161-186

8 Functions & Subroutines Dr.Sandeep Dalal Prof.Sunita Rani 187-212

9 Derived Type & Pointers Dr.Sandeep Dalal Prof.Sunita Rani 213-239

10 File Processing Dr.Sandeep Dalal Prof.Sunita Rani 240-263

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 3 |

Class : M.Sc. (Mathematics) Course Code : MAL 516

Subject : Programming with FORTRAN (Theory)

CHAPTER-1

INTRODUTION TO COMPUTER

STRUCTURE:

1.0 Objective

1.1 Introduction

1.2 Definition of Computer

1.3 History

1.4 Characteristics

1.5 Advantages

1.6 Disadvantages

1.7 Applications

1.8 Generations of Computers

1.9 Component of Computer

1.10 Types of Computers

1.11 Software

 1.11.1 System Software

 1.11.2 Application Software

1.12 Hardware

 1.12.1 Input Devices

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 4 |

 1.12.2 Output Devices

1.13 Summary

1.14 Keyword

1.15 Self-Assessment Question

1.16 Suggested Readings

1.0 Learning Objective:

After reading this chapter, you should be able to:

1. Understand the concept computer.

2. Understand the concept of components of computers.

3. Understand the generations of computers.

4. Understand the types of computers.

5. Understand the concept of software and hardware.

1.1 Introduction:

The term computer has been borrowed from the word compute that means calculate. Initially

computers were used to perform arithmetic calculations at fast speed, now they are used in nearly every

field. You can use computers for Banking Application, Word Processing, Desktop Publishing, Weather

Forecasting, Railway Tickets Reservation, Control of Machine and Robots in Factory, Scientific

Research, etc. In brief, a computer may be defined as a device that receives data from outside world,

analyze it, and then applies a predefined set of instruction’s to it to produce output. For instance, when

you go to Railway Ticket Reservation Counter, the operator feeds your request for a Ticket Reservation

in the computer. The computer analyze the data feed by the operator and make a reservation. Then it

prints a ticket for you. The ticket is the output generated by the computer based on the reservation

request (Input) entered by the operator. It is also said that the computer is a Data Processing mahine,

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 5 |

because it can receive, store, process and retrieve any kind of data. For instance, you can store the

names and addresses of all employees working in a company in a computer file. Later you can ask the

computer to print a list of only those employees who work in the Accounts Department.

1.2 Definition of Computer

Computer is an electronic data processing machine which

1. Accepts data from human world and stores data input,

2. Processes the data input, and

3. Generates the output in a required format

The computer which we see, are digital computers. The digital computer carries out five functions in

gross terms:

1. Takes data as input.

2. Stores the data/instructions in its memory and use them when required.

3. Processes the data and converts it into useful information.

4. Generates the output

5. Controls all the above four steps.

 Figure 1.1 IPO (Input-Process-Output) Cycle

Data:

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 6 |

Data can be defined as a representation of facts, concepts or instructions in a formalized manner which

should be suitable for communication, interpretation, or processing by human or electronic machine.

Data is represented with the help of characters like alphabets (A-Z,a-z), digits (0-9) or special

characters(+,-,/,*,<,>,= etc.).

Information:

Information is organised or classified data which has some meaningful values for the receiver.

Information is the processed data on which decisions and actions are based. For the decision to be

meaningful, the processed data must qualify for the following characteristics:

1. Timely - Information should be available when required.

2. Accuracy - Information should be accurate.

3. Completeness - Information should be complete.

Data Processing Cycle:

Data processing is the re-structuring or re-ordering of data by people or machine to increase their

usefulness and add values for particular purpose. Data processing consists of basic steps input,

processing and output. These three steps constitute the data processing cycle.

1.Input - In this step the input data is prepared in some convenient form for processing. The form will

depend on the processing machine. For example, when electronic computers are used, the input data

could be recorded on any one of several types of input medium, such as magnetic disks, tapes and so on.

2.Processing - In this step input data is changed to produce data in a more useful form. For example,

pay-checks may be calculated from the time cards, or a summary of sales for the month may be

calculated from the sales orders.

3.Output - Here the result of the proceeding processing step are collected. The particular form of the

output data depends on the use of the data. For example, output data may be pay-checks for employees.

1.3 History

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 7 |

The computer was born not for entertainment or email but out of a need to solve a serious number-

crunching crisis. By 1880, the U.S. population had grown so large that it took more than seven years to

tabulate the U.S. Census results. The government sought a faster way to get the job done, giving rise to

punch-card based computers that took up entire rooms.

Today, we carry more computing power on our smartphones than was available in these early models.

The following brief history of computing is a timeline of how computers evolved from their humble

beginnings to the machines of today that surf the Internet, play games and stream multimedia in

addition to crunching numbers.

1801: In France, Joseph Marie Jacquard invents a loom that uses punched wooden cards to

automatically weave fabric designs. Early computers would use similar punch cards.

1822: English mathematician Charles Babbage conceives of a steam-driven calculating machine that

would be able to compute tables of numbers. The project, funded by the English government, is a

failure. More than a century later, however, the world's first computer was actually built. He is also

known as the father of computer.

1890: Herman Hollerith designs a punch card system to calculate the 1880 census, accomplishing the

task in just three years and saving the government $5 million. He establishes a company that would

ultimately become IBM.

1936: Alan Turing presents the notion of a universal machine, later called the Turing machine, capable

of computing anything that is computable. The central concept of the modern computer was based on

his ideas.

1937: J.V. Atanasoff, a professor of physics and mathematics at Iowa State University, attempts to build

the first computer without gears, cams, belts or shafts.

1939: Hewlett-Packard is founded by David Packard and Bill Hewlett in a Palo Alto, California, garage,

according to the Computer History Museum.

1941: Atanasoff and his graduate student, Clifford Berry, design a computer that can solve 29 equations

simultaneously. This marks the first time a computer is able to store information on its main memory.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 8 |

1943-1944: Two University of Pennsylvania professors, John Mauchly and J. Presper Eckert, build the

Electronic Numerical Integrator and Calculator (ENIAC). Considered the grandfather of digital

computers, it fills a 20-foot by 40-foot room and has 18,000 vacuum tubes.

1946: Mauchly and Presper leave the University of Pennsylvania and receive funding from the Census

Bureau to build the UNIVAC, the first commercial computer for business and government applications.

1947: William Shockley, John Bardeen and Walter Brattain of Bell Laboratories invent the transistor.

They discovered how to make an electric switch with solid materials and no need for a vacuum.

1953: Grace Hopper develops the first computer language, which eventually becomes known as

COBOL. Thomas Johnson Watson Jr., son of IBM CEO Thomas Johnson Watson Sr., conceives the

IBM 701 EDPM to help the United Nations keep tabs on Korea during the war.

1954: The FORTRAN programming language, an acronym for FORmulaTRANslation, is developed by

a team of programmers at IBM led by John Backus, according to the University of Michigan.

1958: Jack Kilby and Robert Noyce unveil the integrated circuit, known as the computer chip. Kilby

was awarded the Nobel Prize in Physics in 2000 for his work.

1964: Douglas Engelbart shows a prototype of the modern computer, with a mouse and a graphical user

interface (GUI). This marks the evolution of the computer from a specialized machine for scientists and

mathematicians to technology that is more accessible to the general public.

1969: A group of developers at Bell Labs produce UNIX, an operating system that addressed

compatibility issues. Written in the C programming language, UNIX was portable across multiple

platforms and became the operating system of choice among mainframes at large companies and

government entities. Due to the slow nature of the system, it never quite gained traction among home

PC users.

1970: The newly formed Intel unveils the Intel 1103, the first Dynamic Access Memory (DRAM) chip.

1971: Alan Shugart leads a team of IBM engineers who invent the "floppy disk," allowing data to be

shared among computers.

1973: Robert Metcalfe, a member of the research staff for Xerox, develops Ethernet for connecting

multiple computers and other hardware.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 9 |

1974-1977: A number of personal computers hit the market, including Scelbi & Mark-8 Altair, IBM

5100, Radio Shack's TRS-80 — affectionately known as the "Trash 80" — and the Commodore PET.

1975: The January issue of Popular Electronics magazine features the Altair 8080, described as the

"world's first minicomputer kit to rival commercial models." Two "computer geeks," Paul Allen and

Bill Gates, offer to write software for the Altair, using the new BASIC language. On April 4, after the

success of this first endeavor, the two childhood friends form their own software company, Microsoft.

1976: Steve Jobs and Steve Wozniak start Apple Computers on April Fool's Day and roll out the Apple

I, the first computer with a single-circuit board, according to Stanford University.

The TRS-80, introduced in 1977, was one of the first machines whose documentation was intended for

non-geeks (Image credit: Radioshack)

1977: Radio Shack's initial production run of the TRS-80 was just 3,000. It sold like crazy. For the first

time, non-geeks could write programs and make a computer do what they wished.

1977: Jobs and Wozniak incorporate Apple and show the Apple II at the first West Coast Computer

Faire. It offers colour graphics and incorporates an audio cassette drive for storage.

1978: Accountants rejoice at the introduction of VisiCalc, the first computerized spreadsheet program.

1979: Word processing becomes a reality as MicroPro International releases WordStar. "The defining

change was to add margins and word wrap," said creator Rob Barnaby in email to Mike Petrie in 2000.

"Additional changes included getting rid of command mode and adding a print function. I was the

technical brains — I figured out how to do it, and did it, and documented it.

The first IBM personal computer, introduced on Aug. 12, 1981, used the MS-DOS operating system.

(Image credit: IBM)

1981: The first IBM personal computer, code-named "Acorn," is introduced. It uses Microsoft's MS-

DOS operating system. It has an Intel chip, two floppy disks and an optional color monitor. Sears &

Roebuck and Computer and sell the machines, marking the first time a computer is available through

outside distributors. It also popularizes the term PC.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 10 |

1983: Apple's Lisa is the first personal computer with a GUI. It also features a drop-down menu and

icons. It flops but eventually evolves into the Macintosh. The Gavilan SC is the first portable computer

with the familiar flip form factor and the first to be marketed as a "laptop."

1985: Microsoft announces Windows, according to Encyclopedia Britannica. This was the company's

response to Apple's GUI. Commodore unveils the Amiga 1000, which features advanced audio and

video capabilities.

1985: The first dot-com domain name is registered on March 15, years before the World Wide Web

would mark the formal beginning of Internet history. The Symbolics Computer Company, a small

Massachusetts computer manufacturer, registers Symbolics.com. More than two years later, only 100

dot-coms had been registered.

1986: Compaq brings the Deskpro 386 to market. Its 32-bit architecture provides as speed comparable

to mainframes.

1990: Tim Berners-Lee, a researcher at CERN, the high-energy physics laboratory in Geneva, develops

Hyper Text Markup Language (HTML), giving rise to the World Wide Web.

1993: The Pentium microprocessor advances the use of graphics and music on PCs.

1994: PCs become gaming machines as "Command & Conquer," "Alone in the Dark 2," "Theme Park,"

"Magic Carpet," "Descent" and "Little Big Adventure" are among the games to hit the market.

1996: Sergey Brin and Larry Page develop the Google search engine at Stanford University.

1997: Microsoft invests $150 million in Apple, which was struggling at the time, ending Apple's court

case against Microsoft in which it alleged that Microsoft copied the "look and feel" of its operating

system.

1999: The term Wi-Fi becomes part of the computing language and users begin connecting to the

Internet without wires.

2001: Apple unveils the Mac OS X operating system, which provides protected memory architecture

and pre-emptive multi-tasking, among other benefits. Not to be outdone, Microsoft rolls out Windows

XP, which has a significantly redesigned GUI.

2003: The first 64-bit processor, AMD's Athlon 64, becomes available to the consumer market.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 11 |

2004: Mozilla's Firefox 1.0 challenges Microsoft's Internet Explorer, the dominant Web browser.

Facebook, a social networking site, launches.

2005: YouTube, a video sharing service, is founded. Google acquires Android, a Linux-based mobile

phone operating system.

2006: Apple introduces the MacBook Pro, its first Intel-based, dual-core mobile computer, as well as an

Intel-based iMac. Nintendo's Wii game console hits the market.

2007: The iPhone brings many computer functions to the smartphone.

2009: Microsoft launches Windows 7, which offers the ability to pin applications to the taskbar and

advances in touch and handwriting recognition, among other features.

2010: Apple unveils the iPad, changing the way consumers view media and jumpstarting the dormant

tablet computer segment.

2011: Google releases the Chromebook, a laptop that runs the Google Chrome OS.

2012: Facebook gains 1 billion users on October 4.

2015: Apple releases the Apple Watch. Microsoft releases Windows 10.

2016: The first reprogrammable quantum computer was created. "Until now, there hasn't been any

quantum-computing platform that had the capability to program new algorithms into their system.

They're usually each tailored to attack a particular algorithm," said study lead author Shantanu Debnath,

a quantum physicist and optical engineer at the University of Maryland, College Park.

2017: The Defense Advanced Research Projects Agency (DARPA) is developing a new "Molecular

Informatics" program that uses molecules as computers. "Chemistry offers a rich set of properties that

we may be able to harness for rapid, scalable information storage and processing," Anne Fischer,

program manager in DARPA's Defense Sciences Office, said in a statement. "Millions of molecules

exist, and each molecule has a unique three-dimensional atomic structure as well as variables such as

shape, size, or even color. This richness provides a vast design space for exploring novel and multi-

value ways to encode and process data beyond the 0s and 1s of current logic-based, digital architectures.

1.4 Characteristics

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 12 |

The following are the characteristics of a typical computer:

1). Speed

Present day computer operate at very high speed. A computer can perform several million instructions

(calculations) in one second. For example, it can add or multiply 2 lakh numbers in a second. There are

several different types of computers and they all have different speeds running from high to very-very

high. However, even the speed of the slowest personal computer (PC) is very high compare to that of a

human being, as far as arithmetic operations are concerned. Typically, the speed of computers is

specified in MIP(Million Instructions per Seconds) or MLFOPS(Million Floating-Point Operation Per

Seconds).

2). Accuracy

Computers perform with a very high degree of consistent accuracy. Now a days computer technology

stabilized, and the chances of a computer giving in accurate results are very rare. If you ask a computer

to perform a particular calculation, say, division of two numbers a thousand times, it will perform each

division operation with the same accuracy.

Sometimes computers do make mistakes. This may happen if there is an undedicated flaw in the design

of the computer (That is very rare now a day). Most of the times, computers make mistakes if they are

not programmed correctly. That is, if the programmer who has written the program to do same

calculations did not consider all aspects of the data that will be feed into the computer, it can give in-

accurate results. Computers can give in-accurate results if the input data is in-accurate, e.g. if you try to

divide a number by zero (0).

3). Diligence

When human beings are required to work continuously for a few hours, they become try and start losing

concentration. On the other hand, a computer can continue a work for hour (or even days) at the same

speed and accuracy. It does not show signs of tiredness or lake of concentration when many to work

continuously. Unlike human beings, it does not complain or show lethargy or laziness when made to do

the same task repeated. Because of this property, computers are generally used in all such situation

where the same or similar task has to be repeated a numbers of times, e.g. preparing the salary slip for

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 13 |

10 thousand employs of a company, or printing divide end checks for ten lakh share holders of a large

company.

4). Versatility

Computers are very versatile. The same computer can be used for various applications. For instance,

you can use a Personal Computer (PC) to prepare a latter, prepare the balance sheet of a company, store

a database of employees, produce a professional-looking advertisement, send or receive fax messages,

etc. for a computer to perform a new job, all it needs is a program. (A program is a set of instructions

that enables a computer to do a particular task.) Thus, if you want a computer to do perform a new task,

all you need to write a new program for that task.

5). Data Storage

A computer can store a huge amount of data in its memory. You can store almost any type of data, such

as a letter, Picture, Sound, etc. in a computer. You can recall the stored from the computer whenever

you need it. For instance, if you type a letter you can save it. Then, if you want to send a single letter to

another person, you can recall that letter from the computers memory, modify it and then print a new

letter.

6). No Intelligence

A computer is dumb. It has no intelligence of its own. It cannot think or apply its judgment. It gets its

power from the program that it runes. It will do only what it is asked to do. It has to be hold what to do,

and in what sequence. Therefore, the program that the computer runs determines what task it will

perform. Those, if you run a word processor program on a computer, it becomes a word processor and if

you run a Desktop Publishing (DTP) program, It becomes a Desktop publisher. So, a computer does not

take its own decisions—it simply follows the programmer or the user.

7). No Emotions

Computers are not living beings. Hence, they do not have any emotions. They do not have any heart or

soul. Human beings often take some decisions based on emotions, taste, feelings, etc. in their daily life.

On the other hand, computers always take decisions based on a program that they run.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 14 |

Check your Progress A

Fill in the blanks:

1………. is organised or classified data which has some meaningful values for the receiver.

2 The first IBM personal computer, introduced on ……………….

3. Computers are ……………beings.

1.5 Advantages

Following list demonstrates the advantages of computers in today's arena.

High Speed

1.Space Computer is a very fast device.

2.It is capable of performing calculation of very large amount of data.

3.The computer has units of speed in microsecond, nanosecond, and even the picosecond.

4.It can perform millions of calculations in a few seconds as compared to man who will spend many

months for doing the same task.

Accuracy

1.In addition to being very fast, computers are very accurate.

2.The calculations are 100% error free.

3.Computers perform all jobs with 100% accuracy provided that correct input has been given.

Storage Capability

1.Memory is a very important characteristic of computers.

2.A computer has much more storage capacity than human beings.

3.It can store large amount of data.

4.It can store any type of data such as images, videos, text, audio and many others.

Diligence

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 15 |

1.Unlike human beings, a computer is free from monotony, tiredness and lack of concentration.

2.It can work continuously without any error and boredom.

3.It can do repeated work with same speed and accuracy.

Versatility

1.A computer is a very versatile machine.

2.A computer is very flexible in performing the jobs to be done.

3.This machine can be used to solve the problems related to various fields.

4.At one instance, it may be solving a complex scientific problem and the very next moment it may be

playing a card game.

Reliability

1.A computer is a reliable machine.

2.Modern electronic components have long lives.

3.Computers are designed to make maintenance easy.

Automation

1.Computer is an automatic machine.

2.Automation means ability to perform the given task automatically.

3.Once a program is given to computer i.e., stored in computer memory, the program and instruction

can control the program execution without human interaction.

Reduction of Paper Work

1.The use of computers for data processing in an organization leads to reduction in paper work and

results in speeding up a process.

2.As data in electronic files can be retrieved as and when required, the problem of maintenance of large

number of paper files gets reduced.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 16 |

Reduction in Cost

1.Though the initial investment for installing a computer is high but it substantially reduces the cost of

each of its transaction.

1.6 Disadvantages

Following list demonstrates the disadvantages of computers in today's arena

No I.Q

1.A computer is a machine that has no intelligence to perform any task.

2.Each instruction has to be given to computer.

3.A computer cannot take any decision on its own.

Dependency

1.It functions as per a user’s instruction, so it is fully dependent on human being

2.Environment

3.The operating environment of computer should be dust free and suitable.

No Feeling

1.Computers have no feelings or emotions.

2.It cannot make judgement based on feeling, taste, experience, and knowledge unlike a human being.

1.7 Applications

The use of computers is increasing at such a rate that there is hardly any field where computers are not

used. The following list describes some of the applications of computers:

1.In offices and homes for preparing documents and to perform other data processing jobs.

2.To prepare salary slips and salary cheques in office and factories.

3.To maintain accounts and transfer funds in banks.

4.To store and retrieve large amount of information in offices.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 17 |

5.To send and receive electronic mail / fax.

6.To search and retrieve information from other computers.

7.To reserve tickets in the transportation sectors, eg Railways, Air Lines, etc.

8.To regulate traffic lights on roads and to control machines and robots in factories.

9.To design automobiles, buildings and dams and to forecast weather.

10. To create animation / cartoon movies and compose music.

11.To control modern automobiles, trains, airplanes etc.

12.To control electronic appliances, such as air-conditioner, TVs, VCRs etc.

13.To On-line banking, buy and sell merchandise, shares, bonds, etc.

14.To control and simulate defence equipment.

1.8 Generations of Computers:

The history of the computer goes back several decades however and there are five definable generations

of computers.

Each generation is defined by a significant technological development that changes fundamentally how

computers operate – leading to more compact, less expensive, but more powerful, efficient and robust

machines.

1.8.1 First Generation (1940 – 1956 Vacuum Tubes)

These early computers used vacuum tubes as circuitry and magnetic drums for memory. As a result they

were enormous, literally taking up entire rooms and costing a fortune to run. These were inefficient

materials which generated a lot of heat, sucked huge electricity and subsequently generated a lot of heat

which caused ongoing breakdowns.

These first generation computers relied on ‘machine language’ (which is the most basic programming

language that can be understood by computers). These computers were limited to solving one problem

at a time. Input was based on punched cards and paper tape. Output came out on print-outs. The two

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 18 |

notable machines of this era were the UNIVAC and ENIAC machines – the UNIVAC is the first every

commercial computer which was purchased in 1951 by a business – the US Census Bureau.

1.8.2 Second Generation (1956 – 1963 Transistors)

The replacement of vacuum tubes by transistors saw the advent of the second generation of computing.

Although first invented in 1947, transistors weren’t used significantly in computers until the end of the

1950s. They were a big improvement over the vacuum tube, despite still subjecting computers to

damaging levels of heat. However they were hugely superior to the vacuum tubes, making computers

smaller, faster, cheaper and less heavy on electricity use. They still relied on punched card for

input/printouts.

The language evolved from cryptic binary language to symbolic (‘assembly’) languages. This meant

programmers could create instructions in words. About the same time high level programming

languages were being developed (early versions of COBOL and FORTRAN). Transistor-driven

machines were the first computers to store instructions into their memories – moving from magnetic

drum to magnetic core ‘technology’. The early versions of these machines were developed for the

atomic energy industry.

1.8.3 Third Generation (1964 – 1971 Integrated Circuits)

By this phase, transistors were now being miniaturised and put on silicon chips (called semiconductors).

This led to a massive increase in speed and efficiency of these machines. These were the first

computers where users interacted using keyboards and monitors which interfaced with an operating

system, a significant leap up from the punch cards and printouts. This enabled these machines to run

several applications at once using a central program which functioned to monitor memory.

As a result of these advances which again made machines cheaper and smaller, a new mass market of

users emerged during the ‘60s.

1.8.4 Fourth Generation (1972 – 1989 Microprocessors)

This revolution can be summed in one word: Intel. The chip-maker developed the Intel 4004 chip in

1971, which positioned all computer components (CPU, memory, input/output controls) onto a single

chip. What filled a room in the 1940s now fit in the palm of the hand. The Intel chip housed thousands

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 19 |

of integrated circuits. The year 1981 saw the first ever computer (IBM) specifically designed for home

use and 1984 saw the MacIntosh introduced by Apple. Microprocessors even moved beyond the realm

of computers and into an increasing number of everyday products.

The increased power of these small computers meant they could be linked, creating networks. Which

ultimately led to the development, birth and rapid evolution of the Internet. Other major advances

during this period have been the Graphical user interface (GUI), the mouse and more recently the

astounding advances in lap-top capability and hand-held devices.

1.8.5 Fifth Generation (1990 to onwards Artificial Intelligence)

Figure 1.2 show the artificial intelligence

Computer devices with artificial intelligence are still in development, but some of these technologies are

beginning to emerge and be used such as voice recognition.

AI is a reality made possible by using parallel processing and superconductors. Leaning to the future,

computers will be radically transformed again by quantum computation, molecular and nano

technology.

The essence of fifth generation will be using these technologies to ultimately create machines which can

process and respond to natural language, and have capability to learn and organise themselves.

Check your Progress B

Fill in the blanks:

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 20 |

1. GUI stands for…………………….

2. These early computers used …………as circuitry and magnetic drums for memory.

3.Integrated Circuits used in ………………..generation.

4. A.I stands for……………….

1.9 Components of Computer

A computer is a machine operating under the control of instructions stored in its own memory. These

operations and instructions enable the computer to receive data from a user (input), transform and

manipulate the data according to specified rules (process), produce results (output). Additionally, data,

instructions, and information are stored (storage) for future retrieval and use. Many computers are also

capable of another task: communicating directly with other machines.

The user performs the input task with a device such as a keyboard, mouse, or digital scanner. These

devices allow the user to enter data and instructions into the computer. A secondary storage system

stores and retrieves additional data and instructions that may also be used in the input and processing

stages. This system might include magnetic or optical devices, such as CD-ROMs, hard disks, floppy

disks, and tapes. The central processing system, which manipulates the data, is perhaps the most

important part of the computer. This system is the “brain” of the computer in that it enables the

computer to transform unorganized inputs into useful information. The central processing system

includes the central processing unit (CPU) and the primary memory. The computer’s output system

displays the results of the data manipulation. The output system might include a monitor, a printer, a

plotter, a voice output device, or microfilm/microfiche equipment. A final element of a computer is the

communication system, which passes information from computer to computer over communication

media. Each of these systems is discussed in more detail below.

As noted above, computers come in many types. It would be difficult to adequately cover the variations

in the components of these different computer types in a brief introduction. Therefore, we will confine

the following discussion to personal computers (PCs). However, most of the discussion, especially as

relating to basic computer operations, is easily transferable to other computer types. All types of

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 21 |

computers follow a same basic logical structure and perform the following five basic operations for

converting raw input data into information useful to their users.

Sr.No. Operation Description

1 Take Input The process of entering data and instructions into the computer

system

2 Store Data Saving data and instructions so that they are available for

processing as and when required.

3 Processing Data Performing arithmetic, and logical operations on data in order to

convert them into useful information.

4 Output Information The process of producing useful information or results for the

user, such as a printed report or visual display.

5 Control the workflow Directs the manner and sequence in which all of the above

operations are performed.

 Figure 1.3 Components of CPU

1.Input Unit

This unit contains devices with the help of which we enter data into computer. This unit makes link

between user and computer. The input devices translate the information into the form understandable by

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 22 |

computer. The digital computers can understand the binary language made of zeros and once. The

digital computers are mainly used in input devices.

2. CPU (Central Processing Unit)

CPU is considered as the brain of the computer. CPU performs all types of data processing operations.

It stores data, intermediate results and instructions(program). It controls the operation of all parts of

computer.

CPU itself has following three components

•Memory Unit

•Control Unit

•ALU (Arithmetic and Logical Unit)

Memory or Storage Unit

This unit can store instructions, data and intermediate results. This unit supplies information to the other

units of the computer when needed. It is also known as internal storage unit or main memory or primary

storage or Random access memory(RAM).

Its size affects speed, power and capability. Primary memory and secondary memory are two types of

memories in the computer. Functions of memory unit are:

•It stores all the data and the instructions required for processing.

•It stores intermediate results of processing.

•It stores final results of processing before these results are released to an output device.

•All inputs and outputs are transmitted through main memory.

Storage Unit- Storage devices are the computer hardware used to remember/store data. There are many

types of storage devices, each with their own benefits and drawbacks. Below are explanations about

different storage devices.

1. Hard Disk Drive (HDD)

2. Solid State Drive (SSD)

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 23 |

3. Random Access Memory (RAM)

4. Static RAM (SRAM)

5. Dynamic RAM (DRAM)

6. ROM

7. USB Flash Memory

Control Unit

This unit controls the operations of all parts of computer but does not carry out any actual data

processing operations.

Functions of this unit are:

•It is responsible for controlling the transfer of data and instructions among other units of a computer.

•It manages and coordinates all the units of the computer.

•It obtains the instructions from the memory, interprets them, and directs the operation of the computer.

•It communicates with Input/Output devices for transfer of data or results from storage.

•It does not process or store data.

ALU(Arithmetic Logic Unit)

This unit consists of two subsections namely

•Arithmetic section

•Logic Section

Arithmetic Section

Function of arithmetic section is to perform arithmetic operations like addition, subtraction,

multiplication and division. All complex operations are done by making repetitive use of above

operations. The mathematical function eg. Sinx e
4

etc are not evaluated in this unit.

Logic Section

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 24 |

Function of logic section is to perform logic operations such as comparing, selecting, matching and

merging of data.

3.Output Unit

Output unit consists of devices with the help of which we get the information from computer. This unit

is a link between computer and users. Output devices translate the computer's output into the human

readable format.

1.10 Types of Computers

When talking about a computer or a "PC," you are usually referring to a desktop computer found in a

home or office. Today, however, the lines of what makes a computer are blurring. Below are all the

different examples of what is considered a compute today.

Figure 1.4 shows the types of computers

The picture above shows several types of computers and computing devices, and is an example

Analog computer

These systems were the first type to be produced. It is an electronic machine capable of performing

arithmetic functions on numbers which are represented by some physical quantities such as

temperature, pressure, voltage, etc. Analog refers to circuits or numerical values that have a continuous

range. Popular analog computer used in the 20th century was the slide rule.

Digital Computers

Virtually all modern computers are digital. Digital refers to the processes in computers that manipulate

binary numbers (0s or 1s), which represent switches that are turned on or off by electrical current. A bit

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 25 |

can have the value 0 or the value 1, but nothing in between 0 and 1. A desk lamp can serve as an

example of the difference between analog and digital. If the lamp has a simple on/off switch, then the

lamp system is digital, because the lamp either produces light at a given moment or it does not. If a

dimmer replaces the on/off switch, then the lamp is digital, because the amount of light can vary

continuously from on to off and all intensities in between. Digital computers are more common in use

and it will be our focus of discussion.

Hybrid Computer

This is when a computer make is of both Analog and Digital components and techniques. Such

computer require analog to digital and digital to analog converter which will make analog and digital

data palatable to it.

1.The Desktop :

A computer is referred to a desktop when it is relatively small enough to be positioned on top when a

person is working. Such a computer can also be placed on floor or somewhere under, or aside of, the

table in which case the monitor would be placed on top of the table. This is the most comment type of

computer used in office or at room or at home. A desktop computer is made of different parts that are

connected with cables.

2. The Laptop

 A computer is called laptop when it combines the CPU, the monitor, the keyboard, and the

mouse in one unit to be so small that you can carry it on your laps when traveling or commuting. A

laptop is also called a notebook. Other parts, such as an external mouse, an external keyboard, or

peripherals such as a printer or a projector, can be connected to the laptop. A laptop is only physically

smaller than a desktop but, everything considered, it can do anything that a desktop can do.

3.The Server:

A server is a computer that holds information that other computers, called workstations, can retrieve.

Such workstations are connected to the server using various means they could be connected using cable,

wireless connection, etc. Only computers that maintain a type of connection with the server can get the

information that is stored in the server.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 26 |

Normally, although not particularly recommended, any computer, including a desktop or even a laptop

can be used as a server, as long as it can do the job required. A server is more defined by the program

(called an operating system) that is installed in it, not how the machine looks.

Any type of computer, including a desktop, a laptop, a CD or DVD machine, etc can be connected to a

server.

The person who sets up a server also defines the types of connections it is made for.

3. The Mainframe

A manifest is a computer, usually physically big, that does almost all the jobs for other types of

computers that are connected to it. This is a broad definition but other aspects are involved. Like a

server, the program (operating system) that runs in the mainframe defines its role.

1.11 Software and Types

Software is a general term used to describe a collection of computer programs, procedures, and

documentation that perform some task on a computer system. Practical computer systems divide

software systems into two major classes: system software (Operating system) and application software.

Software is an ordered sequence of instructions for changing the state of the computer hardware in a

particular sequence. Software is typically programmed with a user-friendly interface that allows humans

to interact more efficiently with a computer system as the user interacts with the application software.

A computer system needs more than the hardware described above in order to function. The hardware

by itself, even when powered-up, is incapable of producing useful output. It must be instructed how to

direct its operations in order to transform input into output of value to the user. This is the role of

software; i.e., to provide the detailed instructions that control the operation of a computer system. Just

as hardware comprises the tangible side of the computer, so software is the intangible side of the

computer. If the CPU is the physical brain of the computer, then software is its mind.

Software instructions are programmed in a computer language, translated into machine language, and

executed by the computer. Between the user and the hardware (specifically, the memory), generally

stand two layers of software: system software and application software.

Types Of Software

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 27 |

1. System software

2. Application Software

1.11.1 System software

System software directly controls the computer’s hardware, whereas application software is one level

removed from hardware. System software manages the computer’s resources, enables the various

components of the computer to communicate, runs application software, and makes the hardware

respond to the user’s needs. When the system software operates efficiently, the difficult operations of

controlling the hardware are transparent to the user. System software includes four main types:

The operating system provides an interface between the computer hardware and the user or the

application software.

Language translators convert application programs and any other software programs into the machine

language (discussed below) that actually controls the computer's operations.

Network and communications software operates the communications hardware in a computer so that it

can transmit and receive information from other computers. Network and communications software

requires two types of software: software for the PC operating system and software for the network

operating system. In some cases, the latter comes built-in the former.

Utility programs perform various specialized "housekeeping" tasks, such as file management, virus

protection, disk defragmentation, program installation and uninstallation, file and disk back up, disk

formatting, and providing screen saver programs. This list is far from exhaustive. The user directly

controls most utility programs, although some utility programs can be set to run automatically (e.g.;

screen savers and anti-virus scanning).

The system software is collection of programs designed to operate, control, and extend the processing

capabilities of the computer itself. System software are generally prepared by computer manufactures.

These software products comprise of programs written in low-level languages which interact with the

hardware at a very basic level. System software serves as the interface between hardware and the end

users.

Some examples of system software are Operating System, Compilers, Interpreter, Assemblers etc.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 28 |

Features of system software are as follows:

1. Close to system

2. Fast in speed

3. Difficult to design

4. Difficult to understand

5. Less interactive

6. Smaller in size

7. Difficult to manipulate

8. Generally written in low-level language

Computers of all types require system software to coordinate their resources. The system software for a

single-user PC is not nearly as complex as the system software for a multiuser mainframe computer.

However, as the PC’s system capacity has increased, the sophistication of its system software also has

increased. Many of the features once found only in mainframe and minicomputer systems have been

incorporated into PCs.

1.11.2 Application Software

Application software enables the user to direct the computer’s processing system in the tasks of

manipulating and transforming input data into useful output information. Furthermore, it allows the user

to alter the information generated by the processing system; e.g., how the information is presented. This

is the type of software with which most users interact. It is the usual interface between user and

computer. Rarely do users directly manipulate systems software, especially the operating systems

software.

Application software can be written for a specific user’s application (custom software), or it can be

mass-produced for general use (commercial or packaged software). Naturally, custom software is

usually far more expensive than commercial software. An accounting package written for a specific

company might cost many thousands of dollars, whereas a commercial accounting package might cost

only a few hundred dollars at a retail store. The advantage of custom software is that it is tailored to the

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 29 |

user’s specific needs and can be seamlessly integrated into the user’s existing software. It is not only

commercial software, but less costly, and available also immediately, and the package can be evaluated

before being purchased.

Application software comes in an incredible variety. It is available for business, personal, educational,

communication, and graphic design purposes—to name the more usual categories. There is almost

certainly a software package somewhere available to suit any need. If not, there are programmers ready

to be hired to build it. For our purposes, we will limit our discussion to the four types of application

software most likely to be useful to accounting and business students: word processing, spreadsheet,

database, and presentation graphics. These four applications are frequently sold together in a single

software package. Three of the most popular packages are Corel WordPerfect Suite, Microsoft Office

2000, and Lotus SmartSuite. In addition to the four "standard" applications, these packages usually

include email, Internet, video processing, and desktop publishing applications.

 Word processing programs allow the user to quickly and easily create and revise texts on the

computer screen. By using word processing applications, the user can format documents with ease,

changing font size, margins, color, etc. Different types of documents—e.g., letters, memos, and

reports—are often preformatted in the application. PC-based word processing software is so capable

and inexpensive that, in most businesses, it has become the usual tool for creating documents, even

when more powerful mainframes and minicomputers are available.

 Spreadsheet programs are especially useful in business and accounting. The electronic

spreadsheet consists of rows and columns of data, which the user can easily edit, copy, move, or print.

Using numeric data entered in the spreadsheet, the computer can perform numerous mathematical

calculations automatically, many of impressive sophistication (e.g., statistical, logical, and engineering

functions). One of the spreadsheet program’s most powerful features for business purposes is that it

enables the user to do “what-if” analyses on existing data and to input different data for various

scenarios. Non-numeric data (e.g., names and dates) may also be entered in a spreadsheet. Spreadsheets

can perform some non-mathematical operations (e.g., sorting and filtering) on this data, although this

type of analysis is not a spreadsheet's strength.

 Database software allows the user to enter, store, maintain, retrieve, and manipulate data. In

some ways, databases pickup where spreadsheets leave off, although a fairer assessment is probably that

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 30 |

the relationship between the two types of software is reciprocal. Database software is certainly more

efficient and effective at handling non-numeric data than is spreadsheet software. Conversely, numeric

data is usually easier to manipulate in a spreadsheet. In most databases, data is entered to tables of rows

and columns, similar to spreadsheets. Unlike spreadsheets, these tables can be connected into

relationships that allow users incredible versatility in what they can do with that data. For example,

data—both numeric and non-numeric—from several individual tables may be retrieved and used

together in calculations, with the results presented in a business-style report.

 Presentation graphics software enable users to design professional-quality presentations for

business and educational purposes. The presentations usually consist of formatted slides for projecting

onto a screen from a computer projector or overhead projector, or for display on a large monitor. These

presentations may also be used for online meetings and Web broadcasts. The slides can be designed to

include backgrounds, graphic images, charts, clipart, shading, animation, and audio effects—and, of

course, text, which can sometimes get lost in all of the embellishments.

Application software products are designed to satisfy a particular need of a particular environment. All

software applications prepared in the computer lab can come under the category of Application

software.

Application software may consist of a single program, such as a Microsoft's notepad for writing and

editing simple text. It may also consist of a collection of programs, often called a software package,

which work together to accomplish a task, such as a spreadsheet package.

Examples of Application software are following:

1. Payroll Software

2. Student Record Software

3. Inventory Management Software

4. Income Tax Software

5. Railways Reservation Software

6. Microsoft Office Suite Software

7. Microsoft Word

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 31 |

8. Microsoft Excel

9. Microsoft PowerPoint

1.12 Hardware/Fixware

The term hardware refers to mechanical device that makes up computer. Computer hardware consists of

interconnected electronic devices that we can use to control computer’s operation, input and output.

Examples of hardware are CPU, keyboard, mouse, hard disk, etc. Hardware is also known as fixware.

1.12.1 Input Devices:

Following are some of the important input devices which are used in a computer −

• Keyboard

• Mouse

• Joy Stick

• Light pen

• Track Ball

• Scanner

• Graphic Tablet

• Microphone

• Magnetic Ink Card Reader(MICR)

• Optical Character Reader(OCR)

• Bar Code Reader

• Optical Mark Reader(OMR)

1.12.2 Output Devices:

 Following are some of the important output devices used in a computer.

• Monitors

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 32 |

1. Cathode-Ray Tube (CRT)

2. Flat-Panel Display

• Graphic Plotter

• Printer

1. Impact Printers

2. Non-Impact Printers

Check Your Progress C:

Fill in the blanks:

1 CRT display is made up of ….. picture elements called ………. .

2 Printer is used to ……… information on …………. .

3 Software is a set of ……………………

1.13 Summary:

A computer is a programmable device that stores, retrieves, and processes data. The term "computer"

was originally given to humans (human computers) who performed numerical calculations using

mechanical calculators, such as the abacus and slide rule. The term was later given to a mechanical

device as they began replacing the human computers. Today's computers are electronic devices that

accept data (input), process that data, produce output, and store (storage) the results.

Today, there are two types of computers the PC (IBM compatible) and Apple Mac. Several companies

that make and build PCs, and if you get all the necessary parts for a computer, you can even build a

custom PC. However, when it comes to Apple, only Apple designs and makes these computers. See our

computer companies page for a listing of companies (OEMs) that make and build computers.

1.14 Keywords:

Computer: Computer is an electronic data processing device which accepts and stores data input,

processes the input data, and generated the input data.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 33 |

Data: Data can be defined as a representation of facts, concepts or instructions in a formalized manner

which should be suitable for communication, interpretation, or processing by human or electronic

machine. Data is represented with the help of characters like alphabets (A-Z, a-z), digits (0-9) or special

characters (+,-,/,*,<,>,= etc.).

Information: Information is organised or classified data which has some meaningful values for the

receiver. Information is the processed data on which decisions and actions are based. For the decision to

be meaningful, the processed data must qualify for the following characteristics: timely, accuracy,

completeness.

Data Processing: Data processing is the re-structuring or re-ordering of data by people or machine to

increase their usefulness and add values for particular purpose. Data processing consists of basic steps

input, processing and output. These three steps constitute the data processing cycle i.e input, processing

and output.

ANSWERS TO CHECK YOUR PROGRESS

CHECK YOUR PROGRESS A

1. Information

2. Aug. 12, 1981

3. not living

CHECK YOUR PROGRESS B

1. Graphical user interface

2. vacuum tubes

3. Third

4. artificial intelligence

CHECK YOUR PROGRESS C

1 small, pixels

2 print, paper

3 instructions

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 34 |

1.15 Self Assessed Question:

1.What is computer? Explain in brief?

2.What are components of computers?

3.Explain the types of computes?

4. Explain the generations of computes in brief?

5. What is Software? Explain in brief?

6.Explain the Characteristics of Computer.

7. What is Hardware? Explain in brief?

8. What are the storage devices?

1.16 SUGGESTED READINGS

1. Computer Fundamentals by P.K Sinha, BPA Publications

2. computer Fundamentals Architecture and Organization by B Ram Sanjay Kumar, New Age

International Publishers

3. Computer Fundamentals Introduction to Computers by Faithe Wempen, Johan Wiley & Sons.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 35 |

Class : M.Sc. (Mathematics) Course Code : MAL 516

Subject : Programming with FORTRAN (Theory)

Chapter-2

STEPS TO SOLVE A MATHEMATICAL PROBLEM WITH

COMPUTER

STRUCTURE:

2.0 Objective

2.1 Introduction

2.2 Problem Solving

2.3 Problem Solving Process

2.4 Structured Analysis

2.5 Structured Analysis Tools

 2.5.1 DFD

 2.5.2 Data Dictionary

 2.5.3 Decision Tree

 2.5.4 Decision Table

 2.5.5 Structured English

 2.5.6 Pseudocode

2.6 Guidelines for Choosing the Tools

2.7 Algorithm Design

 4.7.1 Characteristics of Algorithm

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 36 |

 4.7.2 Algorithm vs Pseudocode

2.8 Problem Solving

2.9 Summary

2.10 Keyword

2.11 Self Assessment Question

2.12 Suggested Readings

2.0 Objective:

After reading this chapter, you should be able to:

1) Understand the concept of problem solving.

2) Understand the concept of flow charts.

3) Understand the concept of algorithms.

4) Understand the concept of structured analysis.

2.1 Introduction

Computers do what we tell them to do, NOT what we want them to do. Computer Programming

involves writing instructions and giving them to the computer to complete a task. A computer program

or software is a set of instructions written in a computer language in order to be executed by a computer

to perform a useful task. Ex: Application software packages, such as word processors, spreadsheets and

databases are all computer programs. A Computer Programmer is a person who translates the task you

want a computer to do into a form that a computer can understand. A well designed computer program

must be:

 Correct and Accurate

 Easy to Understand

 Easy to Maintain and Update

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 37 |

 Efficient

 Reliable

 Flexible

The program development process involves the following steps:

1. Program Documentation: Program documentation is the text or graphics that provide description

of the purpose of a function or a particular step

2. The purpose of instruction in a program:

 Determine the user needs

 Design the program specification

 Review the program specifications

 Design the algorithm

 Steps that will convert the available input into the desired output

 Step by step solution for a given problem is called the algorithm

 A flowchart graphically details processing steps of a particular program

3. Code the program: Write the program in a programming language using a program editor. A

program editor is a program that allows to

 Type, edit and save a program code on a disk

 Compile, test and debug the program

4. In order to find out possible errors in the program

 types of errors may be syntax errors

 run-time errors and logic errors

 get program to the user

 install software on the user’s computer and offer training

Types of programming errors

 Syntax of a programming language is the set of rules to be followed when writing a program

 Syntax error occurs when these rules are violated

 Run-time errors occur when invalid data is entered during program execution e.g. program

expects numeric data and alphabetic data is entered

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 38 |

 Program will crash, logic error will not stop the program but results will be inaccurate

The process of finding and correcting errors in a program is called debugging. For successful

programming:

 Give no ambiguity in program instructions

 Give no possibility of alternative interpretations

 Make sure there is only one course of action

Programming task can be made easier by breaking large and complex programs into smaller and less

complex subprograms (modules).Programming task can be separated into 2 phases

 Problem solving phase

 Produce an ordered sequence of steps

that describes the solution of problem. This sequence of steps is called an algorithm. e.g of an

algorithm: a recipe, to assemble a brand new computer etc.

Implementation phase:

 Implement the program in some programming language (Pascal, Basic, C)

 Figure 2.1: Problem Solving and Programming

Structured programming: A programming technique that splits the program into smaller segments

(modules) to

1. Decrease program development time

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 39 |

2. Decrease program maintenance cost

3. Improve the quality of software

Structured programming achieves these goals by using

1. Top-down design and use of modules

2. Use of limited control structures (sequence, selection and repetition)

3. Management control

Top-down design starts with major functions involved in a problem and divide them into sub-functions

until the problem has been divided as much as possible.

2.2 Problem Solving:

Problem solving is the act of defining a problem; determining the cause of the problem; identifying,

prioritizing, and selecting alternatives for a solution; and implementing a solution.

• The problem-solving process

Step

Characteristics

1. Define the problem Differentiate fact from opinion

 Specify underlying causes

 Consult each faction involved for information

 State the problem specifically

 Identify what standard or expectation is violated

 Determine in which process the problem lies

Avoid trying to solve the problem without data

2. Generate alternative

solutions

 Postpone evaluating alternatives initially

 Include all involved individuals in the generating of

alternatives

 Specify alternatives consistent with organizational goals

 Specify short- and long-term alternatives

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 40 |

 Brainstorm on others' ideas

Seek alternatives that may solve the problem

3. Evaluate and select an

alternative

 Evaluate alternatives relative to a target standard

 Evaluate all alternatives without bias

 Evaluate alternatives relative to established goals

 Evaluate both proven and possible outcomes

State the selected alternative explicitly

4. Implement and follow up

on the solution

 Plan and implement a pilot test of the chosen alternative

 Gather feedback from all affected parties

 Seek acceptance or consensus by all those affected

 Establish ongoing measures and monitoring

Evaluate long-term results based on final solution

 Problem solving resources

 Figure 2.2 Problem Solving Chart

2.3 Problem Solving Process:

In order to effectively manage and run a successful organization, leadership must guide their employees

and develop problem-solving techniques. Finding a suitable solution for issues can be accomplished by

following the basic four-step problem-solving process and methodology outlined below.

1. Define the problem

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 41 |

Diagnose the situation so that your focus is on the problem, not just its symptoms. Helpful problem-

solving techniques include using flowcharts to identify the expected steps of a process and cause-and-

effect diagrams to define and analyze root causes.

The sections below help explain key problem-solving steps. These steps support the involvement of

interested parties, the use of factual information, comparison of expectations to reality, and a focus on

root causes of a problem. You should begin by:

• Reviewing and documenting how processes currently work (i.e., who does what, with what

information, using what tools, communicating with what organizations and individuals, in what time

frame, using what format).

•Evaluating the possible impact of new tools and revised policies in the development of your "what

should be" model.

2. Generate alternative solutions

Postpone the selection of one solution until several problem-solving alternatives have been proposed.

Considering multiple alternatives can significantly enhance the value of your ideal solution. Once you

have decided on the "what should be" model, this target standard becomes the basis for developing a

road map for investigating alternatives. Brainstorming and team problem-solving techniques are both

useful tools in this stage of problem solving.

Many alternative solutions to the problem should be generated before final evaluation. A common

mistake in problem solving is that alternatives are evaluated as they are proposed, so the first acceptable

solution is chosen, even if it’s not the best fit. If we focus on trying to get the results we want, we miss

the potential for learning something new that will allow for real improvement in the problem-solving

process.

3. Evaluate and select an alternative

Skilled problem solvers use a series of considerations when selecting the best alternative. They consider

the extent to which:

• A particular alternative will solve the problem without causing other unanticipated problems.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 42 |

• All the individuals involved will accept the alternative.

• Implementation of the alternative is likely.

• The alternative fits within the organizational constraints.

4. Implement and follow up on the solution

Leaders may be called upon to direct others to implement the solution, "sell" the solution, or facilitate

the implementation with the help of others. Involving others in the implementation is an effective way

to gain buy-in and support and minimize resistance to subsequent changes.

Regardless of how the solution is rolled out, feedback channels should be built into the implementation.

This allows for continuous monitoring and testing of actual events against expectations. Problem

solving, and the techniques used to gain clarity, are most effective if the solution remains in place and is

updated to respond to future changes.

2.4 Structured Analysis:

Structured Analysis is a development method that allows the analyst to understand the system and its

activities in a logical way.

It is a systematic approach, which uses graphical tools that analyze and refine the objectives of an

existing system and develop a new system specification which can be easily understandable by user.

It has following attributes −

• It is graphic which specifies the presentation of application.

• It divides the processes so that it gives a clear picture of system flow.

• It is logical rather than physical i.e., the elements of system do not depend on vendor or hardware.

• It is an approach that works from high-level overviews to lower-level details.

Check your progress A

1 Structured programming …………….. the development time.

2 Problem solving is the ……………… a problem.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 43 |

3 ……………… is a development method that allows the analyst to understand the system.

2.5 Structured Analysis Tools

During Structured Analysis, various tools and techniques are used for system development. They are −

• Data Flow Diagrams

• Data Dictionary

• Decision Trees

• Decision Tables

• Structured English

• Pseudocode

 Figure 2.3 shows the structured analysis tool

2.5.1 Data Flow Diagrams (DFD)

It is a technique developed by Larry Constantine to express the requirements of system in a graphical

form.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 44 |

• It shows the flow of data between various functions of system and specifies how the current system is

implemented.

• It is an initial stage of design phase that functionally divides the requirement specifications down to

the lowest level of detail.

• Its graphical nature makes it a good communication tool between user and analyst or analyst and

system designer.

• It gives an overview of what data a system processes, what transformations are performed, what data

are stored, what results are produced and where they flow.

Basic Elements of DFD

DFD is easy to understand and quite effective when the required design is not clear and the user wants a

notational language for communication. However, it requires a large number of iterations for obtaining

the most accurate and complete solution.

The following table shows the symbols used in designing a DFD and their significance −

Symbol Name Symbol Meaning

Square

Source or Destination of

Data

Arrow

Data flow

Circle

Process transforming data

flow

Open Rectangle

Data Store

Types of DFD

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 45 |

DFDs are of two types: Physical DFD and Logical DFD. The following table lists the points that

differentiate a physical DFD from a logical DFD.

Physical DFD Logical DFD

It is implementation dependent. It shows

which functions are performed.

It is implementation independent. It focuses

only on the flow of data between processes.

It provides low level details of hardware,

software, files, and people.

It explains events of systems and data

required by each event.

It depicts how the current system operates

and how a system will be implemented.

It shows how business operates; not how the

system can be implemented.

Context Diagram

A context diagram helps in understanding the entire system by one DFD which gives the overview of a

system. It starts with mentioning major processes with little details and then goes onto giving more

details of the processes with the top-down approach.

 Figure 2.4 Context Diagram to show the mess management system

2.5.2 Data Dictionary

A data dictionary is a structured repository of data elements in the system. It stores the descriptions of

all DFD data elements that is, details and definitions of data flows, data stores, data stored in data

stores, and the processes.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 46 |

A data dictionary improves the communication between the analyst and the user. It plays an important

role in building a database. Most DBMSs have a data dictionary as a standard feature. For example,

refer the following table –

Sr. No. Data Name Description No. of Characters

1 ISBN ISBN Number 10

2 TITLE Title 60

3 SUB Book Subjects 80

4 ANAME Author Name 15

2.5.3 Decision Trees

Decision trees are a method for defining complex relationships by describing decisions and avoiding the

problems in communication. A decision tree is a diagram that shows alternative actions and conditions

within horizontal tree framework. Thus, it depicts which conditions to consider first, second, and so on.

Decision trees depict the relationship of each condition and their permissible actions. A square node

indicates an action and a circle indicates a condition. It forces analysts to consider the sequence of

decisions and identifies the actual decision that must be made.

Figure 2.5 Decision tree structure

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 47 |

The major limitation of a decision tree is that it lacks information in its format to describe what other

combinations of conditions you can take for testing. It is a single representation of the relationships

between conditions and actions.

For example, refer the following decision tree −

Figure 2.6 Decision tree for customer

2.5.4 Decision Tables

Decision tables are a method of describing the complex logical relationship in a precise manner which

is easily understandable.

• It is useful in situations where the resulting actions depend on the occurrence of one or several

combinations of independent conditions.

• It is a matrix containing row or columns for defining a problem and the actions.

Components of a Decision Table

• Condition Stub − It is in the upper left quadrant which lists all the condition to be checked.

• Action Stub − It is in the lower left quadrant which outlines all the action to be carried out to meet

such condition.

• Condition Entry − It is in upper right quadrant which provides answers to questions asked in condition

stub quadrant.

• Action Entry − It is in lower right quadrant which indicates the appropriate action resulting from the

answers to the conditions in the condition entry quadrant.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 48 |

The entries in decision table are given by Decision Rules which define the relationships between

combinations of conditions and courses of action. In rules section,

• Y shows the existence of a condition.

• N represents the condition, which is not satisfied.

• A blank - against action states it is to be ignored.

• X (or a check mark will do) against action states it is to be carried out.

For example, refer the following table –

CONDITIONS Rule 1 Rule 2 Rule 3 Rule 4

Advance

payment made

Y N N N

Purchase

amount = Rs

10,000/-

- Y Y N

Regular

Customer

- Y N -

ACTIONS

Give 5%

discount

X X - -

Give no

discount

- - X X

2.5.5 Structured English

Structure English is derived from structured programming language which gives more understandable

and precise description of process. It is based on procedural logic that uses construction and imperative

sentences designed to perform operation for action.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 49 |

• It is best used when sequences and loops in a program must be considered and the problem needs

sequences of actions with decisions.

• It does not have strict syntax rule. It expresses all logic in terms of sequential decision structures and

iterations.

For example, see the following sequence of actions −

if customer pays advance

 then

 Give 5% Discount

 else

 if purchase amount >=10,000

 then

if the customer is a regular customer

 then Give 5% Discount

else No Discount

 end if

 else No Discount

 end if

end if

2.5.6 Pseudocode

A pseudocode does not conform to any programming language and expresses logic in plain English.

• It may specify the physical programming logic without actual coding during and after the physical

design.

• It is used in conjunction with structured programming.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 50 |

• It replaces the flowcharts of a program.

2.6 Guidelines for Selecting Appropriate Tools

Use the following guidelines for selecting the most appropriate tool that would suit your requirements −

• Use DFD at high or low level analysis for providing good system documentations.

• Use data dictionary to simplify the structure for meeting the data requirement of the system.

• Use structured English if there are many loops and actions are complex.

• Use decision tables when there are a large number of conditions to check and logic is complex.

• Use decision trees when sequencing of conditions is important and if there are few conditions to be

tested.

2.7 Algorithm Design

The important aspects of algorithm design include creating an efficient algorithm to solve a problem in

an efficient way using minimum time and space.

To solve a problem, different approaches can be followed. Some of them can be efficient with respect to

time consumption, whereas other approaches may be memory efficient. However, one has to keep in

mind that both time consumption and memory usage cannot be optimized simultaneously. If we require

an algorithm to run in lesser time, we have to invest in more memory and if we require an algorithm to

run with lesser memory, we need to have more time.

Problem Development Steps

The following steps are involved in solving computational problems.

• Problem definition

• Development of a model

• Specification of an Algorithm

• Designing an Algorithm

• Checking the correctness of an Algorithm

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 51 |

• Analysis of an Algorithm

• Implementation of an Algorithm

• Program testing

• Documentation

2.7.1 Characteristics of Algorithms

The main characteristics of algorithms are as follows −

• Algorithms must have a unique name

• Algorithms should have explicitly defined set of inputs and outputs

• Algorithms are well-ordered with unambiguous operations

• Algorithms halt in a finite amount of time. Algorithms should not run for infinity, i.e., an algorithm

must end at some point

2.7.2 Difference between Algorithm and Pseudocode

An algorithm is a formal definition with some specific characteristics that describes a process, which

could be executed by a Turing-complete computer machine to perform a specific task. Generally, the

word "algorithm" can be used to describe any high level task in computer science.

On the other hand, pseudocode is an informal and (often rudimentary) human readable description of an

algorithm leaving many granular details of it. Writing a pseudocode has no restriction of styles and its

only objective is to describe the high level steps of algorithm in a much realistic manner in natural

language.

For example, following is an algorithm for Insertion Sort.

Algorithm: Insertion-Sort

Input: A list L of integers of length n

Output: A sorted list L1 containing those integers present in L

Step 1: Keep a sorted list L1 which starts off empty

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 52 |

Step 2: Perform Step 3 for each element in the original list L

Step 3: Insert it into the correct position in the sorted list L1.

Step 4: Return the sorted list

Step 5: Stop

Here is a pseudocode which describes how the high level abstract process mentioned above in the

algorithm Insertion-Sort could be described in a more realistic way.

for i<- 1 to length(A)

 x <- A[i]

 j <- i

 while j > 0 and A[j-1] > x

 A[j] <- A[j-1]

 j <- j - 1

 A[j] <- x

Example: Write an algorithm to determine the students final grade and indicate weather it is

passing or failing. The final grade is calculated as the average of four marks.

Solution:

Pseudocode: Input a set of 4 marks

 Calculate their average by summing and dividing by 4

 if average is below 50

 Print “FAIL”

 else

 Print “PASS”

Detailed Algorithm: Step 1: Input M1, M2,M3,M4

 Step 2: GRADE = (M1+M2+M3+M4)/4

 Step 3: if (GRADE <50) then

Print “FAIL”

 else

Print “PASS”

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 53 |

Flow chart to determine the student grade

TRACE TABLE:

MARK GRADE STATUS

M1=80 80

M2=30 + 30

M3=40 + 40

M4=30 + 30 /4

 = 45 FAIL

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 54 |

Example: Write an algorithm and draw a flowchart to convert the length in feet to centimeter.

Pseudocode: Input the lenght in feet (Lft)

 Calculate the length in cm (Lcm) by multiplying LFT with 30

 Print LCM

Algorithm: Step 1: Input Lft

 Step 2: Lcm = Lft x 30

 Step 3: Print Lcm

Flowchart

Example : Write an algorithm and draw a flowchart that will read the two sides of a rectangle and

calculate its area.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 55 |

Pseudocode: Input the width (W) and Length (L) of a rectangle

 Calculate the area (A) by multiplying L with W

 Print A

Algorithm: Step 1: Input W,L

 Step 2: A = L x W

 Step 3: Print A

 Flowchart

Example : Write an algorithm and draw a flowchart that will calculate the roots of a quadratic equation

ax2 + bx + c = 0

Hint: d = sqrt (b2 – 4ac), and the roots are: x1 = (–b + d)/2a and x2 = (–b – d)/2a

Pseudocode: Input the coefficients (a, b, c) of the quadratic equation

 Calculate the discriminant d

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 56 |

Calculate x1

 Calculate x2

 Print x1 and x2

Algorithm: Step 1: Input a, b, c

 Step 2: d = sqrt (b2 – 4 x a x c)

 Step 3: x1 = (–b + d) / (2 x a)

Step 4: x2 = (–b – d) / (2 x a)

Step 5: Print x1 and x2

Flowchart:

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 57 |

Example : Write and algorithm to

a) read an employee name (NAME), overtime hours worked (OVERTIME), hours absent (ABSENT)

and

b) determine the bonus payment (PAYMENT).

Algorithm: Step 1: Input NAME,OVERTIME,ABSENT

 Step 2: if OVERTIME–(2/3)*ABSENT > 40

 then PAYMENT = 50

 else if OVERTIME–(2/3)*ABSENT > 30

 then PAYMENT = 40

 else if OVERTIME–(2/3)*ABSENT > 20

 then PAYMENT = 30

 else if OVERTIME–(2/3)*ABSENT > 10

 then PAYMENT = 20

 else PAYMENT = 10

 endif

 endif

 endif

Bonus Schedule

OVERTIME – (2/3)*ABSENT Bonus Paid

>40 hours

>30 but 40 hours

>20 but 30 hours

>10 but 20 hours

 10 hours

$50

$40

$30

$20

$10

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 58 |

 endif

 Step 3: Print “Bonus for”, NAME “is $”, PAYMENT

Check your progress B

1Structured English is derived from ……………….

2 Decision tables are a method of describing the ……………………….. in a precise manner which is

easily understandable.

3 ………….. is a diagram that shows alternative actions.

2.8 Types of Problems

The problems that can be solved on computers are:

1- Computational Problems (involve mathematical processing)

2- Logical Problems (involve relational or logical processing, decision making on computer)

3- Repetitive Problems (involve repeating a set of mathematical or/and logical instructions)

Types of Solutions

1. Algorithmic Solutions: solutions that can be reached through a direct set of steps (series of steps) are

called algorithmic solutions.

2. Heuristic Solutions: solutions that cannot be reached through a direct set of steps are called heuristic

solutions. (trial and error)

3. Combination of these two kinds of solutions.

2.9 Summary:

An algorithm is a set of steps of operations to solve a problem performing calculation, data processing,

and automated reasoning tasks. An algorithm is an efficient method that can be expressed within finite

amount of time and space.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 59 |

An algorithm is the best way to represent the solution of a particular problem in a very simple and

efficient way. If we have an algorithm for a specific problem, then we can implement it in any

programming language, meaning that the algorithm is independent from any programming languages

Structured Analysis is a development method that allows the analyst to understand the system and its

activities in a logical way.

It is a systematic approach, which uses graphical tools that analysis and refine the objectives of an

existing system and develop a new system specification which can be easily understandable by user.

Flow charts are easy-to-understand diagrams that show how the steps of a process fit together.

American engineer Frank Gilbreth is widely believed to be the first person to document a process flow,

having introduced the concept of a “Process Chart” to the American Society of Mechanical Engineers in

1921.

2.10 Keywords:

Structured Analysis: Structured Analysis is a development method that allows the analyst to

understand the system and its activities in a logical way.

Flow chart: Flow charts are easy-to-understand diagrams that show how the steps of a process fit

together.

Algorithm: An algorithm is a set of steps of operations to solve a problem performing calculation, data

processing, and automated reasoning tasks.

Answer to check your Progress

Check your Progress A

1 decrease

2 act of defining

3 Structured Analysis

Check your Progress B

1 Structured programming language

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 60 |

2 complex logical relationship

3 Decision tree

2.11 Self Assessed Questions:

1. What is problem solving?

2. What are the program development strategies?

3. What is flow chat? Explain in detail?

4. What is algorithm? Explain in detail?

2.12 SUGGESTED READINGS

1. Decision Making and Problem Solving Strategies by Johan Adiar

2. Strategies for Creative Problem Solving by H.Scott Fogler,Stevene.LeBLANC with

 Banjamin Rizzo

3. Problem Solving Strategies by Arthur Engel,Springer.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 61 |

Class : M.Sc. (Mathematics) Course Code : MAL 516

Subject : Programming with FORTRAN (Theory)

Chapter-3

BASIC CONCEPTS OF FORTRAN

STRUCTURE

3.0 Objective

3.1 Introduction

3.2 History

3.3 Features

3.4 Basic Syntax of Fortran Program

3.5 Basic character Set

3.6 Identifiers

3.7 Keywords

3.8 Data Types

 3.8.1 Integer Type……………

 3.8.2 Real Type……………….

 3.8.3 Complex Type…………..

 3.8.4 Logical Type……………..

 3.8.5 Character Type……………..

3.9 Evolution of Fortran

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 62 |

3.10 Constants

 3.10.1 Integer Constant

 3.10.2 Real Constant

 3.10.3 Keeping Constant Consistent

3.11 Named Constant & Literals

3.12 Variables

 3.12.1 Integer Constant & Variable

 3.12.2 Character Constant & Variable

 3.12.3 Default & Explicit Variable Typing

3.13 Declaration of Variables

3.14 Implicit Declaration of Variables

3.15 Summary

3.16 Keyword

3.17 Self Assessment Question

3.18 Suggested Readings

3.0 Objective:

After reading this chapter, you should be able to:

1) Understand why FORTRAN is invented.

2) Understand the syntax of the FORTRAN.

3) Understand the which keywords are used in FORTRAN.

4) Understand the Data Types

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 63 |

3.1 Introduction:

“FORTRAN stands for FORmula TRANslation”.FORTRAN is the first high level programming

language developed by John Backus in 1957. It was basically designed to write programs for high-

performance computing and is mainly suited for numeric computing scientific computing and scientific

applications that involve extensive mathematical computations. The main motive behind its designing

was to translate math formulas into code.

Fortran used in numerical, scientific computing. While out with the scientific community, Fortran has

declined in popularity over the years, it still has a strong user base with scientific programmers, and is

also used in organisations such as weather forecasters, financial trading, and in engineering simulations.

Fortran programs can be highly optimised to run on high performance computers, and in general the

language is suited to producing code where performance is important.

Fortran is a compiled language, or more specifically it is compiled ahead-of-time. In other words, you

must perform a special step called compilation of your written code before you are able to run it on a

computer. This is where Fortran differs to interpreted languages such as Python and R which run

through an interpreter which executes the instructions directly, but at the cost of compute speed.

 Figure 3.1 Language hierarchy

It supports −

1) Numerical analysis and scientific computation

2) Structured programming

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 64 |

3) Array programming

4) Modular programming

5) Generic programming

6) High performance computing on supercomputers

7) Object oriented programming

8) Concurrent programming

9) Reasonable degree of portability between computer systems.

The structured program consists of well structured and separated modules. But the entry and exit in a

Structured program is a single-time event. It means that the program uses single-entry and single-exit

elements. Therefore a structured program is well maintained, neat and clean program. The fundamental

idea behind array programming is that operations apply at once to an entire set of values. It is a software

design technique that separates the functionality of a program into independent,

interchangeable modules, such that each contains everything necessary to execute only one aspect of

the desired functionality. Object-oriented programming (OOP) is a computer programming model that

organizes software design around data, or objects, rather than functions and logic. An object can be

defined as a data field that has unique attributes and behavior.

3.2 History

Before the invention of FORTRAN, programmers used assembly/machine code to develop a program

which was excessively difficult and time consuming. This led to the invention of FORTRAN which was

simple to learn, machine independent, makes mathematical calculations easy, and is suitable for all type

of applications. Since it was so easier to code, programmers were able to write their programs 500%

faster in FORTRAN than the earlier ones.

Fortran was originally named after the contraction of Formula Translation, highlighting Fortran’s

origins as a language designed specifically for mathematical calculations. Fortran was developed in the

early 1950s and the first ever Fortran program ran in 1954 - making Fortran fairly unusual among

programming languages in that it predates the modern transistor computer - the first Fortran program

ran on the IBM 704 vacuum tube computer! Fortran has outlived several nation states since its

https://en.wikipedia.org/wiki/Software_design
https://en.wikipedia.org/wiki/Software_design
https://en.wikipedia.org/wiki/Computer_program
https://searchapparchitecture.techtarget.com/definition/object

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 65 |

conception, and still is in wide use today in a number of specialised scientific communities.

Unfortunately Fortran is often referred to as an ‘outdated’ or ‘legacy’ programming language. I disagree

with this description, as although Fortran has a long history, the language continues to be updated, new

features are developed and added to the Fortran language standard, and there is still a strong community

behind Fortran. The latest Fortran standard was released in 2018, bringing many new features and

keeping Fortran a relevant, highly performant language for contemporary scientific computing

challenges.

FORTRAN IV and FORTRAN 77 are the most common versions of FORTRAN. FORTRAN IV

became a USASI standard in 1966 and FORTRAN 77 was approved by ANSI in 1978. In the early

1990s, a new ISO and ANSI standard for FORTRAN, called FORTRAN 90 was developed.

Fortran Programming Language:

Perhaps you have previously used other programming languages, such as Python, R, or MATLAB,

which have developed with easy to understand syntax in mind, and with a programming style that

favours more rapid development time at the expense of computational performance. Fortran will seem

different to these languages in many ways, but the principles of programming remain broadly the same,

and some syntax is shared or similar to elements of other programming languages.

3.3 Features:

Some of the key features of this language are as follows:

1) Simple language: Easy to learn and understand.

2) Machine independent: A program can be transported from one machine to another machine.

3) Expresses complex mathematical functions: It offers various natural ways to express complex

mathematical functions.

4) Efficient execution: Only around 20% decrease in efficiency as compared to assembly or machine

code.

5) Storage allocation: It allows programmers to control the allocation of storage.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 66 |

6) Freedom in code layout: The programmers don't need to layout code in rigidly defined columns

unlike assembly or machine language.

3.4 Basic Syntax of Fortran Program

A Fortran program is made of a collection of program units like a main program, modules, and external

subprograms or procedures.

Each program contains one main program and may or may not contain other program units. The syntax

of the main program is as follows –

program program_name

implicit none

! type declaration statements

! executable statements

end program program_name

Example

Let’s write a program that adds two numbers and prints the result –

program addNumbers

! This simple program adds two numbers

 implicit none

! Type declarations

real :: a, b, result

! Executable statements

 a = 7.0

 b = 5.0

 result = a + b

 print *, 'The total is ', result

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 67 |

end program add Numbers

When you compile and execute the above program, it produces the following result −

The total is 12.00000

Please note that −

• All Fortran programs start with the keyword program and end with the keyword end program,

followed by the name of the program.

• The implicit none statement allows the compiler to check that all your variable types are declared

properly. You must always use implicit none at the start of every program.

• Comments in Fortran are started with the exclamation mark (!), as all characters after this (except in a

character string) are ignored by the compiler.

• The print * command displays data on the screen.

• Indentation of code lines is a good practice for keeping a program readable.

• Fortran allows both uppercase and lowercase letters. Fortran is case-insensitive, except for string

literals.

Check your Progress A

1Fortran stands for ………………

2 Fortran is developed by ……………….

3 Fortran is used for ………………..

3.5 Basic Character Set

The basic character set of Fortran contains −

1) the letters A ... Z and a ... z

2) the digits 0 ... 9

3) the underscore (_) character

4) the special characters = : + blank - * / () [] , . $ ' ! " % & ; <> ?

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 68 |

Tokens are made of characters in the basic character set. A token could be a keyword, an identifier, a

constant, a string literal, or a symbol.

Program statements are made of tokens.

3.6 Identifier/ Variable Name

An identifier is a name used to identify a variable, procedure, or any other user-defined item. A name in

Fortran must follow the following rules −

• It cannot be longer than 31 characters.

• It must be composed of alphanumeric characters (all the letters of the alphabet, and the digits 0 to 9)

and underscores (_).

• First character of a name must be a letter.

• Names are case-insensitive

3.7 Keywords

Keywords are special words, reserved for the language. These reserved words cannot be used as

identifiers or names.

The following table, lists the Fortran keywords –

 The non-I/O keywords

Allocatable Allocate Assign Assignment block data

Call Case Character Common Complex

Contains Continue Cycle Data Deallocate

Default Do double precision Else else if

Elsewhere end block data end do end function end if

end interface end module end program end select end subroutine

end type end where Entry equivalence Exit

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 69 |

External Function go to If Implicit

In Inout Integer Intent Interface

Intrinsic Kind Len Logical Module

Namelist Nullify Only Operator Optional

Out Parameter Pause Pointer Private

Program Public Real Recursive Result

Return Save select case Stop Subroutine

Target Then Type type() use

Where While

 The I/O related keywords

Backspace Close Endfile Format inquire

Open Print Read Rewind Write

3.8 Data Types

Fortran provides five intrinsic data types. The five intrinsic types are −

1) Integer type

2) Real type

3) Complex type

4) Logical type

5) Character type

3.8.1 Integer Type:

The integer types can hold only integer values. The following example extracts the largest value that

can be held in a usual four byte integer –

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 70 |

program testingInt

implicit none

integer :: largeval

 print *, huge(largeval)

end program testingInt

When you compile and execute the above program it produces the following result −

2147483647

Note that the huge() function gives the largest number that can be held by the specific integer data type.

You can also specify the number of bytes using the kind specifier. The following example demonstrates

this −

program testingInt

implicit none

!two byte integer

integer(kind = 2) :: shortval

!four byte integer

integer(kind = 4) :: longval

!eight byte integer

integer(kind = 8) :: verylongval

!sixteen byte integer

integer(kind = 16) :: veryverylongval

!default integer

integer :: defval

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 71 |

 print *, huge(shortval)

 print *, huge(longval)

 print *, huge(verylongval)

 print *, huge(veryverylongval)

 print *, huge(defval)

end program testingInt

When you compile and execute the above program, it produces the following result −

32767

2147483647

9223372036854775807

170141183460469231731687303715884105727

2147483647

3.8.2 Real Type:

It stores the floating point numbers, such as 2.0, 3.1415, -100.876, etc.

Traditionally there are two different real types, the default real type and double precision type.

However, Fortran 90/95 provides more control over the precision of real and integer data types through

the kind specifier, which we will study in the chapter on Numbers.

The following example shows the use of real data type −

program division

implicit none

 ! Define real variables

real :: p, q, realRes

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 72 |

 ! Define integer variables

integer :: i, j, intRes

 ! Assigning values

 p = 5.0

 q = 6.0

i = 5

 j = 6

 ! floating point division

realRes = p/q

intRes = i/j

 print *, realRes

 print *, intRes

end program division

When you compile and execute the above program it produces the following result −

0.8333333333

0

3.8.3 Complex Type:

This is used for storing complex numbers. A complex number has two parts, the real part and the

imaginary part. Two consecutive numeric storage units store these two parts.

For example, the complex number (3.0, -5.0) is equal to 3.0 – 5.0i

We will discuss Complex types in more detail, in the Numbers chapter.

3.8.4 Logical Type

There are only two logical values: .true. and .false.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 73 |

Character Type

The character type stores characters and strings. The length of the string can be specified by len

specifier. If no length is specified, it is 1.

For example,

character (len = 40) :: name

name = “Zara Ali”

The expression, name(1:4) would give the substring “Zara”.

3.8.5 Implicit Typing

Older versions of Fortran allowed a feature called implicit typing, i.e., you do not have to declare the

variables before use. If a variable is not declared, then the first letter of its name will determine its type.

Variable names starting with i, j, k, l, m, or n, are considered to be for integer variable and others are

real variables. However, you must declare all the variables as it is good programming practice. For that

you start your program with the statement −

implicit none

This statement turns off implicit typing.

Check your Progress B

1 ………… is a name used to identify a variable, procedure, or any other user-defined item.

2 Older versions of Fortran allowed a feature called ………………..

3 ………. number has two parts, the real part and the imaginary part.

4 ………… are special words, reserved for the language.

3.9 Evolution of Fortran:

The Fortran language is a dynamic language that is constantly evolving to keep up with advances in

programming practice and computing technology. A major new version appears about once per decade.

The responsibility for developing new versions of the Fortran language lies with the International

Organization for Standardization’s (ISO) Fortran Working Group,WG5. That organization has

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 74 |

delegated authority to the J3 Committee of the Inter National Committee for Information Technology

Standards (INCITS) to actually prepare new versions of the language. The preparation of each new

version is an extended process involving first asking for suggestions for inclusion in the language,

deciding which suggestions are feasible to implement, writing and circulating drafts to all interested

parties throughout the world, and correcting the drafts and trying again until general agreement is

reached. Eventually, a worldwide vote is held and the standard is adopted. The designers of new

versions of the Fortran language must strike a delicate balance between backward compatibility with the

existing base of Fortran programs and the introduction of desirable new features. Although modern

structured programming features and approaches have been introduced into the language, many

undesirable features from earlier versions of Fortran have been retained for backward compatibility.

The designers have developed a mechanism for identifying undesirable and obsolete features of the

Fortran language that should no longer be used, and for eventually eliminating them from the language.

Those parts of the language that have been superseded by new and better methods are declared to be

obsolescent features.

Features that have been declared obsolescent should never be used in any new programs. As the use of

these features declines in the existing Fortran code base, they will then be considered for deletion from

the language. No feature will ever be deleted from a version of the language unless it was on the

obsolescent list in at least one previous version, and unless the usage of the feature has dropped off to

negligible levels. In this fashion, the language can evolve without threatening the existing Fortran code

base.

The redundant, obsolescent, and deleted features of Fortran 2008 are described in We can get a feeling

for just how much the Fortran language has evolved over the years by examining. These three figures

show programs for calculating the solutions to the quadratic equation ax2 + bx + c = 0 in the styles of

the original FORTRAN I, of FORTRAN 77, and of Fortran 2008. It is obvious that the language has

become more readable and structured over the years. Amazingly, though, Fortran 2008 compilers will

still compile the FORTRAN I program with just a few minor changes!10.

Example:

A FORTRAN I program to solve for the roots of the quadratic equation ax2 + bx + c = 0.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 75 |

C SOLVE QUADRATIC EQUATION IN FORTRAN I

 READ 100,A,B,C

100 FORMAT(3F12.4)

 DISCR = B**2-4*A*C

 IF (DISCR) 10,20,30

10 X1=(-B)/(2.*A)

 X2=SQRTF(ABSF(DISCR))/(2.*A)

 PRINT 110,X1,X2

110 FORMAT(5H X = ,F12.3,4H +i ,F12.3)

 PRINT 120,X1,X2

120 FORMAT(5H X = ,F12.3,4H -i ,F12.3)

 GOTO 40

20 X1=(-B)/(2.*A)

 PRINT 130,X1

130 FORMAT(11H X1 = X2 = ,F12.3)

 GOTO 40

30 X1=((-B)+SQRTF(ABSF(DISCR)))/(2.*A)

 X2=((-B)-SQRTF(ABSF(DISCR)))/(2.*A)

 PRINT 140,X1

140 FORMAT(6H X1 = ,F12.3)

 PRINT 150,X2

150 FORMAT(6H X2 = ,F12.3)

40 CONTINUE

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 76 |

 STOP 25252

3.10 Constants

The constants refer to the fixed values that the program cannot change during its execution. These fixed

values are also called literals.

Constants can be of any of the basic data types like an integer constant, a floating constant, a character

constant, a complex constant, or a string literal. There are only two logical constants : .true and .false.

The constants are treated just like regular variables, except that their values cannot be modified after

their definition.

Constants can be classified into two types:

1.Integer Constants

2.Real Constants

3.10.1 Integer Constant

Integer constants are whole number without having fractional part are called as integer constant. The

allowed digits in a Decimal constant are 0,1,2,3,4,5,6,7,8,9

Rule:

A integer constant must have at least on digit and must be written without decimal point. It may have

either sign + or -.If either sign does not proceed the constant it is assumed to be constant.

1) Special symbols are not allowed.

2) Decimal numbers are not allowed.

3) Blank spaces are not allowed in between the digits.

4) Characters are not allowed.

Examples:

The following are the valid constant:

i. 12345

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 77 |

ii. -1245

iii. +1234

The following are the invalid constants:

i. 11.0(Decimal number)

ii. 12,34(comma not allowed)

iii. $1234(Special Symbol are not allowed)

iv. y1234(first letter must be a digit)

The range of values of integer lies in between the +(231-1) to –231 that is +217483647 to -217483647.

3.10.2 Real Constant

A real constant may be written in one or two forms called Fractional font or the exponent form.

Rule

A mantissa constant the fractional form at least one digit and met be written with a decimal point. It

may have either the + or the sin preceding does se precede then it is assumed to be positive.

Examples

The following are valid real constants:

1) 1.0

2) -0.5678

3) 5800000.0

4) -0.0000156

The following are invalid

1) 1 (Decimal Point missing)

2) -1/2 (Symbol/ illegal)

3) 5,867894 Comma not allowed

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 78 |

4) 25_685 Underscore not allowed)

In the examples done even though 58000000 and - 00000156 are valid real constants IL is more

convenient to write them as 0.58X 10^7 and 0.156 * 10^-4 respectively.

Exponent:

The exponential notation for writing real constants provides this facility. In this notation these two

numbers may be written

1) 0.58E7

2) -0.156E-4

 In the above examples E7 and E4 are used to represent 10' and 10 respectively.

In this notation a real constant is represented in two parts a mantissa part (the plant appearing before E)

and an exponent part (he part following E) Thus 058 and-0.156 are the respective months and 7 and real

constants in the exponent form.

Rule

A real constant in the exponential form consist of a mantissa and an exponent. The mantissa must have

at least on digit. It may have a Sign. If a sign is omitted it is assumed to be positive. The mantissa is

followed by the letter E or e and the exponent The exponent must be an integer (without a decimal

point) and must have at least one digit. A sign for the exponent is optional.

The actual number of digits in the mantissa and the exponent depends on the computer being used. The

mantissa may have upto seven digits and the exponent may be between 38 und +38 in a 32-bit machine.

Examples

The following are valid real constants in the exponent form

1. (a) 152E08 b) 152.0E8 c) 152E +08 (d) 1520E7

2. -0.148E-5

3. 152 859E25

4. 0.01540EO5

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 79 |

 Observe that in (1) above four equivalent ways of writing the same constant are given.

The following are invalid:

1. 152, AE8 (letter A in mantissa incorrect)

2. 125 * E9 (* not allowed)

3. +145.8E (No digit specified for exponent)

4. -125,9E5.5 (exponent cannot be a fraction)

5. 0.158E +954 (exponent too large)

6. 125,458.25E -5 (comma not allowed in mantissa)

7. 0.158E (decimal point in exponent not allowed)

3.10.3 Keeping Constant Consistent:

It is important to always keep your physical constants consistent throughout a program. For example, do

not use the value 3.14 for π at one point in a program, and 3.141593 at another point in the program.

Also, you should always write your constants with at least as much precision as your computer will

accept. If the real data type on your computer has seven significant digits of precision, then π should be

written as 3.141593, not as 3.14!

The best way to achieve consistency and precision throughout a program is to assign a name to a

constant, and then to use that name to refer to the constant throughout the program. If we assign the

name PI to the constant 3.141593, then we can refer to PI by name throughout the program, and be

certain that we are getting the same value everywhere. Furthermore, assigning meaningful names to

constants improves the overall readability of our programs, because a programmer can tell at a glance

just what the constant represents.

Named constants are created using the PARAMETER attribute of a type declaration statement. The

form of a type declaration statement with a PARAMETER attribute is

type, PARAMETER :: name = value [, name2 = value2, ...] where type is the type of the constant

(integer, real, logical, or character), and name is the name assigned to constant value. More than one

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 80 |

parameter may be declared on a single line if they are separated by commas. For example, the following

statement assigns the name pi to the constant 3.141593.

REAL, PARAMETER :: PI = 3.141593

If the named constant is of type character, then it is not necessary to declare the length of the character

string. Since the named constant is being defined on the same line as its type declaration, the Fortran

compiler can directly count the number of characters in the string. For example, the following

statements declare a named constant error_message to be the 14-character string ‘Unknown error!’.

CHARACTER, PARAMETER :: ERROR_MESSAGE = 'Unknown error!'

In languages such as C, C++, and Java, named constants are usually written in all capital letters. Many

Fortran programmers are also familiar with these languages, and they have adopted the convention of

writing named constants in capital letters in Fortran as well.

3.11 Named Constants & Literals

There are two types of constants −

• Literal constants

• Named constants

A literal constant have a value, but no name.

For example, following are the literal constants –

Type Example

Integer constants 0 1 -1 300 123456789

Real constants 0.0 1.0 -1.0 123.456 7.1E+10 -52.715E-30

Complex constants (0.0, 0.0) (-123.456E+30, 987.654E-29)

Logical constants .true. .false.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 81 |

Character constants

"PQR" "a" "123'abc$%#@!"

" a quote "" "

'PQR' 'a' '123"abc$%#@!'

' an apostrophe '' '

When the above code is compiled and executed, it produces the following result −

Time = 5.00000000

Displacement = 127.374992

3.12 Variables

A variable is nothing but a name given to a storage area that our programs can manipulate. Each

variable should have a specific type, which determines the size and layout of the variable's memory; the

range of values that can be stored within that memory; and the set of operations that can be applied to

the variable.

The name of a variable can be composed of letters, digits, and the underscore character. A name in

Fortran must follow the following rules −

1) It cannot be longer than 31 characters.

2) It must be composed of alphanumeric characters (all the letters of the alphabet, and the digits 0 to 9)

and underscores (_).

3) First character of a name must be a letter.

4) Names are case-insensitive.

Following are the variable types –

Sr.No Type & Description

1 Integer

It can hold only integer values.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 82 |

2 Real

It stores the floating point numbers.

3 Complex

It is used for storing complex numbers.

4 Logical

It stores logical Boolean values.

5 Character

It stores characters or strings.

3.12.1 Integer Constant & Variable

The integer data type consists of integer constants and variables. This data type can only store integer

values—it cannot represent numbers with fractional parts. An integer constant is any number that does

not contain a decimal point. If a constant is positive, it may be written either with or without a + sign.

No commas may be embedded within an integer constant. The following examples are valid integer

constants:

0

-999

123456789

+17

The following examples are not valid integer constants:

1,000,000 (Embedded commas are illegal.)

-100. (If it has a decimal point, it is not an integer constant!)

An integer variable is a variable containing a value of the integer data type.

Constants and variables of the integer data type are usually stored in a single word on a computer. Since

the length of a word varies from 32 bits to 64 bits on different computers, the largest integer that can be

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 83 |

stored in a computer also varies. The largest and smallest integers that can be stored in a particular

computer can be determined from the word size by applying Equations (1-1) and (1-2).

Almost all Fortran compilers support integers with more than one length. For example, most PC

compilers support 16-bit, 32-bit, and 64-bit integers. These different lengths of integers are known as

different kinds of integers. Fortran has an explicit mechanism for choosing which kind of integer is used

for a given value.

3.12.2 Real Constant & variable

The real data type consists of numbers stored in real or floating-point format. Unlike integers, the real

data type can represent numbers with fractional components.

A real constant is a constant written with a decimal point. It may be written with or without an

exponent. If the constant is positive, it may be written either with or without a + sign. No commas may

be embedded within a real constant. Real constants may be written with or without an exponent. If used,

the exponent consists of the letter E followed by a positive or negative integer, which corresponds to the

power of 10 used when the number is written in scientific notation. If the exponent is positive, the +

sign may be omitted. The mantissa of the number (the part of the number that precedes the exponent)

should contain a decimal point. The following

examples are valid real constants:

10.

-999.9

+1.0E-3 (= 1.0 × 10−3, or 0.001)

123.45E20 (= 123.45 × 1020, or 1.2345 × 1022)

0.12E+1 (= 0.12 × 101

, or 1.2)

The following examples are not valid real constants:

1,000,000. (Embedded commas are illegal.)

111E3 (A decimal point is required in the mantissa.)

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 84 |

-12.0E1.5 (Decimal points are not allowed in exponents.)

A real variable is a variable containing a value of the real data type.

A real value is stored in two parts: the mantissa and the exponent. The number of bits allocated to the

mantissa determines the precision of the constant (that is, the number of significant digits to which the

constant is known), while the number of bits allocated to the exponent determines the range of the

constant (that is, the largest and the smallest values that can be represented).

Over the last 25 years, almost all computers have switched to using floating-point numbers that conform

to IEEE Standard 754. Table 2-2 shows the precision and the range of typical real constants and

variables on IEEE Standard 754 compliant computers.

All Fortran compilers support real numbers with more than one length. For example, PC compilers

support both 32-bit real numbers and 64-bit real numbers. These different lengths of real numbers are

known as different kinds. By selecting the proper kind, it is possible to increase the precision and range

of a real constant or variable.

Fortran has an explicit mechanism for choosing which kind of real is used for a given value.

3.12.3 Character Constant & variable

The character data type consists of strings of alphanumeric characters. A character constant is a string of

characters enclosed in single (') or double (") quotes. The minimum number of characters in a string is

0, while the maximum number of characters in a string varies from compiler to compiler.

The characters between the two single or double quotes are said to be in a character context. Any

characters representable on a computer are legal in a character context, not just the 97 characters

forming the Fortran character set.

The following are valid character constants:

'This is a test!'

'/b ' (a single blank)3

'{ˆ}' (These characters are legal in a character

context even though they are not a part of

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 85 |

the Fortran character set.)

"3.141593" (This is a character string, not a number.)

The following are not valid character constants:

This is a test! (No single or double quotes)

'This is a test!" (Mismatched quotes)

"Try this one.' (Unbalanced single quotes)

If a character string must include an apostrophe, then that apostrophe may be represented by two

consecutive single quotes. For example, the string “Man’s best friend” would be written in a character

constant as 'Man''s best friend'

Alternatively, the character string containing a single quote can be surrounded by double quotes. For

example, the string “Man’s best friend” could be written as

"Man's best friend"

Similarly, a character string containing double quotes can be surrounded by single quotes. The character

string “Who cares?” could be written in a character

constant as

'"Who cares?"'

Character constants are most often used to print descriptive information using the

WRITE statement. WRITE (*,*) 'Result = ', k

A character variable is a variable containing a value of the character data type.

3.12.4 Default and Explicit Variable Typing

When we look at a constant, it is easy to see whether it is of type integer, real, or character. If a number

does not have a decimal point, it is of type integer; if it has a decimal point, it is of type real. If the

constant is enclosed in single or double quotes, it is of type character. With variables, the situation is not

so clear. How do we (or the compiler) know if the variable junk contains an integer, real, or character

value?

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 86 |

There are two possible ways in which the type of a variable can be defined: default typing and explicit

typing. If the type of a variable is not explicitly specified in the program, then default typing is used. By

default:

Any variable names beginning with the letters i, j, k, l, m, or n are assumed to be of type INTEGER.

Any variable names starting with another letter are assumed to be of type REAL.

Therefore, a variable called incr is assumed to be of type integer by default, while a variable called big

is assumed to be of type real by default. This default typing convention goes all the way back to the

original Fortran I in 1954. Note that no variable names are of type character by default, because this

data type didn’t exist in Fortran I!

The type of a variable may also be explicitly defined in the declaration section at the beginning of a

program. The following Fortran statements can be used to specify the type of variables:4

INTEGER :: var1 [, var2, var3, ...]

REAL :: var1 [, var2, var3, ...]

where the values inside the [] are optional. In this case, the values inside the brackets show that more

than two variables may be declared on a single line if they are separated by commas.

These nonexecutable statements are called type declaration statements. They should be placed after the

PROGRAM statement and before the first executable statement in the program, as shown in the

example below.

PROGRAM example

INTEGER :: day, month, year

REAL :: second

(Executable statements follow here...)

There are no default names associated with the character data type, so all character

variables must be explicitly typed using the CHARACTER type declaration statement.

This statement is a bit more complicated than the previous ones, since character variables may have

different lengths. Its form is:

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 87 |

CHARACTER(len=<len>) :: var1 [, var2, var3, ...]

where <len> is the number of characters in the variables. The (len=<len>) portion

of the statement is optional. If only a number appears in the parentheses, then the character variables

declared by the statement are of that length. If the parentheses are entirely absent, then the character

variables declared by the statement have length 1. For

example, the type declaration statements

CHARACTER(len=10) :: first, last

CHARACTER :: initial

CHARACTER(15) :: id

define two 10-character variables called first and last, a 1-character variable called initial, and a 15-

character variable called id.

Check your Progress C

1 ……….. is nothing but a name given to a storage area that our programs can manipulate.

2 Real constant may be written in one or two forms called …………………...

3…….. refer to the fixed values that the program cannot change during its execution.

3.13 Declaration of Variables

Variables are declared at the beginning of a program (or subprogram) in a type declaration statement.

Syntax for variable declaration is as follows −

type-specifier :: variable_name

For example

integer :: total

real :: average

complex :: cx

logical :: done

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 88 |

character(len = 80) :: message ! a string of 80 characters

Later you can assign values to these variables, like,

total = 20000

average = 1666.67

done = .true.

message = “A big Hello from Tutorials Point”

cx = (3.0, 5.0) ! cx = 3.0 + 5.0i

You can also use the intrinsic function cmplx, to assign values to a complex variable −

cx = cmplx (1.0/2.0, -7.0) ! cx = 0.5 – 7.0i

cx = cmplx (x, y) ! cx = x + yi

Example

The following example demonstrates variable declaration, assignment and display on screen

program variableTesting

implicit none

 ! declaring variables

integer :: total

real :: average

complex :: cx

logical :: done

 character(len=80) :: message ! a string of 80 characters

!assigning values

 total = 20000

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 89 |

 average = 1666.67

 done = .true.

 message = "Hello"

 cx = (3.0, 5.0) ! cx = 3.0 + 5.0i

 Print *, total

 Print *, average

 Print *, cx

 Print *, done

 Print *, message

end program variableTesting

When the above code is compiled and executed, it produces the following result −

20000

1666.67004

(3.00000000, 5.00000000)

T

Hello

3.14 Implicit Declaration of Variables

FORTRAN did not require variables to be explicitly declared. It was implicitly assumed that any

variable name starting with I,J,K,L,M,N was a INTEGER and a variable name starting with any of the

other letters in the alphabet REAL. Not requiring the declaration of variables before their use led to

serious errors in FORTRAN programs which were difficult to detect. Thus FORTRAN designers

wanted declaration of variables to be compulsory as in other languages such an C and Pascal. But this

was not enforced as old FORTRAN 77 programs had to be accepted by FORTRAN 90 compilers. In

other words, it was was decided that FORTRAN 77 should be subset of FORTRAN 90. Thus old syntax

rules had to be honoured.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 90 |

Thus if by mistake a Fortran 90 programmer forgot to declare a variable, the compiler will not defect

and give it a default type based on the first letter of the name. To ensure that this mistake does not

happen it is advised that all Fortran 90 programs must have the statement

 IMPLICIT NONE

before declaring variables. In this book we will put IMPLICIT NONE at the beginning of every

program before variables are declared

The statement

 IMPLICIT NONE

informs the compiler that be variable name has a detail type. Thus it in compulsory to dictate the type of

each variable used in the program. If it is not done, the Fortran 90 compiler will signal a syntax error.

Check your Progress D

1 Fortran program consists of a mixture of …………………… statements.

2 …………….. consists of the nonexecutable statements at the beginning of the program.

3 First executable statement in this program is the ………….. statement.

3.15 SUMMARY:

FORTRAN is a first High Level Language. FORTRAN is compiled imperative programming language

that is especially suited to numeric computation and scientific computing. Fortran encompasses a

lineage of versions, each of which evolved to add extensions to the language while usually retaining

compatibility with prior versions. Successive versions have added support for structured programming

and processing of character-based data.

Fortran's design was the basis for many other programming languages. Amongst the better-known is

Basic which is based on FORTRAN II with a number of syntax cleanups, notably better logical

structures, and other changes to work more easily in an interactive environment.

3.16 KEYWORDS

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 91 |

Fortran: FORTRAN is the first high level programming language developed by John Backus in 1957.

Originally developed for scientific calculations, it had very limited support for character strings and

other structures needed for general purpose programming.

Identifiers: An identifier is a name used to identify a variable, procedure, or any other user-defined

item.

Keywords: Keywords are special words, reserved for the language. These reserved words cannot be

used as identifiers or names.

Data Types: Fortran provides five intrinsic data types, however, you can derive your own data types as

well. The five intrinsic types are –(i) Integer (ii) Real (iii) Complex (iv) Logical (v) Character

Constant: An entity which does not change during the execution of the program.

Integer Constant: Integer constants are whole number they do not include fractional part.

Real Constant: Real constants may be written in one or two forms called Fractional form and Exponent

form.

Variable: A variable is nothing but a name given to a storage area that our programs can manipulate.

Each variable should have a specific type, which determines the size and layout of the variable's

memory.

Answer to check your Progress

Check your Progress A

1Formula Translation

2 John Backus in 1957

3 scientific calculations

Check your Progress B

1 Identifiers

2 implicit typing

3 Complex

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 92 |

4 Keywords

Check your Progress C

1 Variable

2 Fractional form and Exponent form

3 Constants

Check your Progress D

1 non-executable and executable

2 Declaration Section

3 WRITE

3.17 SELF-ASSESSMENT QUESTIONS:

1. What do u mean by Fortran?

2. Explain a Syntax of a Fortran program and also describe the Data Types and Keywords used in

Fortran

3. Explain the variable declaration?

4. Explain the concept of constants and variable?

3.18 SUGGESTED READINGS

1. Computer Programming in Fortran 90 and 95 by V Rajaraman

2. Introduction to Programming with Fortran by Chivers, lan, Sleightholme, Jane

3. Fortran For Scientists and Engineers by Stephen J. Chapman, Mcgraw-Hill

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 93 |

Class : M.Sc. (Mathematics) Course Code : MAL 516

Subject : Programming with FORTRAN (Theory)

Chapter-4

INPUT/ OUTPUT STATEMENNTS

STRUCTURE

4.0 Objective

4.1 List Directed Input Statement

4.2 Preparing Input data

4.3 List Directed Output Statement

4.4 Formatted Input/Output Statement

4.5 Format Specification

 4.5.1 Integer Output- I Descriptor

 4.5.2 Real Output- F Descriptor

 4.5.3 Real Output- E Descriptor

 4.5.4 Logical Output- L Descriptor

 4.5.5 Character Output- A Descriptor

 4.5.6 Changing Output- Slash Descriptor

 4.5.7 Formats are used During WRITE’s

4.6 Summary

4.7 Keyword

4.8 Self Assessment Question

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 94 |

4.9 Suggested Readings

4.0 Objective:

After reading this chapter, you should be able to:

1) Understand the concept of input statement.

2) Understand the concept of output statement.

3) Understand the concept of format specification.

4) Understand how input/ output is formatted.

4.1 List Directed Input Statement:

List-directed input is carried out with the Fortran READ statements. The READ statement can read

input values into a set of variables from the keyboard.

The READ statement has the following forms:

READ(*,*) var1, var2, ..., varn

READ *,var1,var2,…,varn

The first form starts with READ(*,*), followed by a list of variable names, separated by commas. The

computer will read values from the keyboard successively and puts the value into the variables. The

second form only has READ(*,*), which has a special meaning.

1.The following example reads in four values into variables Factor, N, Multiple and tolerance in this

order.

 INTEGER :: Factor, N

 REAL :: Multiple, tolerance

 READ(*,*) Factor, N, Multiple, tolerance

2. The following example reads in a string into Title, followed by three real numbers into Height,

Length and Area.

 CHARACTER(LEN=10) :: Title

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 95 |

 REAL :: Height, Length, Area

 READ(*,*) Title, Height, Length, Area

4.2 Preparing Input Data:

Preparing input data is simple. Here are the rules:

1.If a READ statement needs some input values, start a new line that contains the input data. Make sure

the type of the input value and the type of the corresponding variable are the same. The input data

values must be separated by space or commas.

For the following READ

 CHARACTER(LEN=5) :: Name

 REAL :: height, length

 INTEGER :: count, MaxLength

 READ(*,*) Name, height, count, length, MaxLength

The input data may look like the following:

"Smith" 100.0 25 123.579 10000

Note that all input data are on the same line and separated with spaces commas are not allowed. After

reading in this line, the contents of the variables are

 Name "Smith"

 height 100.0

 count 25

 length 123.579

 MaxLength 100000

2. Input values can be on several lines. As long as the number of input values and the number of

variables in the corresponding READ agree, the computer will search for the input values. Thus, the

following input should produce the same result. Note that even blank lines are allowed in input.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 96 |

 "Smith" 100.0

 25

 123.579

 10000

3. The execution of a READ statement always starts searching for input values with a new input line.

 INTEGER :: I, J, K, L, M, N

 READ(*,*) I, J

 READ(*,*) K, L, M

 READ(*,*) N

If the above READ statements are used to read the following input lines,

 100 200

 300 400 500

 600

then I, J, K, L, M and N will receive 100, 200, 300, 400, 500 and 600, respectively.

4. Consequently, if the number of input values is larger than the number of variables in a READ

statement, the extra values will be ignored. Consider the following:

 INTEGER :: I, J, K, L, M, N

 READ(*,*) I, J, K

 READ(*,*) L, M, N

If the input lines are

 100 200 300 400

 500 600 700 800

 900

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 97 |

Variables I, J and K receive 100, 200 and 300, respectively. Since the second READ starts with a new

line, L, M and N receive 500, 600 and 700, respectively. 400 on the first input line is lost. The next

READ will start reading with the third line, picking up 900. Hence, 800 is lost.

5. A limited type conversion is possible in a READ statement. If the input value is an integer and the

corresponding variable is of REAL type, the input integer will be convert to a real number.

But, if the input value is a real number and the corresponding variable is of INTEGER type, an error

will occur.

The length of the input string and the length of the corresponding CHARACTER variable do not have

to be equal. If they are not equal, truncation or padding with spaces will occur as discussed in the

PARAMETER attribute page.

6. Finally, a READ without a list of variables simply skips a line of input. Consider the following:

 INTEGER :: P, Q, R, S

 READ(*,*) P, Q

 READ(*,*)

 READ(*,*) R, S

If the input lines are

 100 200 300

 400 500 600

 700 800 900

The first READ reads 100 and 200 into P and Q and 300 is lost. The second READ starts with a new

input line, which is the second one. It does not read in anything. The third READ starts with the third

line and reads 700 and 800 into R and S. As a result, the three input values (i.e., 400, 500 and 600) are

all lost. The third value on the third line, 900, is also lost.

Check Your Progress A

1 Input is carried out with the Fortran ………… statements.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 98 |

2 The execution of a ……. always starts searching for input values with a new input line.

3 Output is carried with the Fortran ………… statement.

4.3 List Directed Output Statement

Listed-directed output is carried with the Fortran WRITE statement. The WRITE statement can display

the results of a set of expressions and character strings. In general, WRITE displays the output on the

screen. The WRITE statement has the following forms:

 WRITE(*,*) exp1, exp2, ..., expn

 WRITE *,exp1,exp2,…,expn

Or WRITE(*,*)

The first form starts with WRITE(*,*), followed by a list of arithmetic expressions or character strings,

separated by commas. The computer will evaluate the arithmetic expressions and displays the results.

Note that if a variable does not contain a value, its displayed result is unpredictable. The second form

only has WRITE(*,*), which has a special meaning.

The following example displays the values of four variables on screen:

 INTEGER :: Factor, N

 REAL :: Multiple, tolerance

WRITE(*,*) Factor, N, Multiple, tolerance

The following example displays the string content of Title, followed by the result of (Height + Length)

* Area.

 CHARACTER(LEN=10) :: Title

 REAL :: Height, Length, Area

 WRITE(*,*) Title, (Height + Length) * Area

There are some useful rules:

1. Each WRITE starts with a new line.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 99 |

2. Consequently, the second form in which the WRITE does not have a list of expressions just displays

a blank line.

 INTEGER :: Target

 REAL :: Angle, Distance

 CHARACTER(LEN=*), PARAMETER :: Time = "The time to hit target " &

 IS = " is " &

 UNIT = " sec."

 Target = 10

 Angle = 20.0

 Distance = 1350.0

 WRITE(*,*) 'Angle = ', Angle

 WRITE(*,*) 'Distance = ', Distance

 WRITE(*,*)

 WRITE(*,*) Time, Target, IS, Angle * Distance, UNIT

This example may produce the following result:

Angle = 20.0

Distance = 1350.0

The time to hit target 10 is 27000sec.

The blank line is generated by the third WRITE.

The above example uses assumed length specifier (i.e., LEN=*) and continuation lines (i.e., symbol &).

3.If there are too many results that cannot be fit into a single line, the computer will display remaining

results on the second, the third line and so on.

4.4 Formatted Input/Output Statement

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 100 |

Up to this point, we have not formatted our output or input specified how we want it to look.

READ *,var-name

PRINT *, "The output values are ", var1, var2, var3

The * indicates list-directed input and output, output printed according to FORTRAN's built-in rules.

Formatted output allows the programmer to control the appearance or format of the output.

Example-The user is asked to input the weight of the train in tons and the radius of the curve in meters.

Each line of output contains the velocity (mph) and the force (Newtons) at that velocity.

PROGRAM force

 REAL weight, radius, force

 INTEGER mph

c Ask the user to enter the weight of the train (tons) and the

c radius of the curve (meters).

 PRINT *, 'Enter the weight of the train in tons.'

 READ *, weight

 PRINT *,'Enter the radius of the curve in meters.'

 READ *, radius

c Converts the weight in tons to kilograms.

 mass = 1.016047e03 * weight

c Prints a header for the output.

 PRINT *,'Velocity (mph)',' ','Centrifugal Force (Newtons)'

c Computes the centrifugal force of a train on its tracks using

c the formula force=(mass * velocity**2)/radius. Each mph is

c converted to meters per second by the conversion equations:

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 101 |

c 1 mile = 1.609344e03 meters and 1 hour = 3600 seconds.

c The mph and forces are then printed.

 DO 10 mph=50, 70

 veloc = (1.609344e03/3600.) * real(mph)

 force=(mass*veloc**2)/radius

 PRINT 200, mph, force

200 FORMAT (4x,I2, 15x, F10.1)

10 CONTINUE

 STOP

 END

The format of the output was specified in the statement

200 FORMAT (4x,I2, 15x, F10.1)

The specifier

4x prints 4 blanks.

I2 tells the computer to print the first variable of the PRINT list, mph, as a right-justified integer with

two positions.

15x prints 15 blanks.

F10.1 prints the second variable, force, as a floating-point number with a total of 10 positions, 1 of

which is a decimal position (to the right of the decimal point).

I2 and F10.1 are called format specifiers.

There is nothing to worry about the output format. The computer will use its own rules to display the

results. In other words, integers and real numbers will be displayed as integers and real numbers. But,

only the content of a string will be displayed. The computer will also guarantee that all significant digits

will be shown so that one does not have to worry how many positions should be used for displaying a

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 102 |

number. The consequence is that displaying a good-looking table is a challenge. This will be discussed

in FORMAT statement.

Check your Progress B

1 The descriptor used to describe the display format of integer data is the …. descriptor.

2 One format descriptor used to describe the display format of real data is the … descriptor.

3 Character data is displayed using the ……. format descriptor.

4.5 Format Specification

There are many different format descriptors. They fall into four basic categories:

1. Format descriptors that describe the vertical position of a line of text.

2. Format descriptors that describe the horizontal position of data in a line.

3. Format descriptors that describe the output format of a particular value.

4. Format descriptors that control the repetition of portions of a format.

We will deal with some common examples of format descriptors in this chapter. Below Table contains a

list of symbols used with format descriptors, together with their meanings.

4.5.1 Integer Output—The I Descriptor

The descriptor used to describe the display format of integer data is the I descriptor. It

has the general form

rIw or rIw.m

Symbol Meaning

c

d

m

n

Column number

Number of digits to right of decimal place for real input or output

Minimum number of digits to be displayed

Number of spaces to skip

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 103 |

r

w

Repeat count-the number of times to use a descriptor or group of descriptors

Field width- the number of characters to use for the input or output.

where r, w, and m have the meanings give. This means that integers are printed out so that the last digit

of the integer occupies the rightmost column of the field. If an integer is too large to fit into the field in

which it is to be printed, then the field is filled with asterisks. For example,

the following statements:

INTEGER :: index = -12, junk = 4, number = -12345

 WRITE (*,200) index, index+12, junk, number

 WRITE (*,210) index, index+12, junk, number

 WRITE (*,220) index, index+12, junk, number

 200 FORMAT (' ', 2I5, I6, I10)

 210 FORMAT (' ', 2I5.0, I6, I10.8)

 220 FORMAT (' ', 2I5.3, I6, I5)

will produce the output

 -12 0 4 -12345

 -12 4 -00012345

 -012 000 4*****

 ----|----|----|----|----|----|

 5 10 15 20 25 30

The special case of the zero length descriptor I0 causes the integer to be written

out with a variable field width sufficient to hold the information contained in the integer. For example,

the following statements:

INTEGER :: index = -12, junk = 4, number = -12345

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 104 |

 WRITE (*,100) index, junk, number

 100 FORMAT (I0,1X,I0,1X,I0)

will produce the output

 -12 4 -12345

 ----|----|----|----|----|----|

 5 10 15 20 25 30

This form of the format descriptor is especially useful for ensuring that the data will always be

displayed, but it is not suitable for creating tables of data, because the columns of data will not be

aligned properly.

4.5.2 Real Output—The F Descriptor

One format descriptor used to describe the display format of real data is the F descriptor. It has the form

rFw.d

where r, w, and d have the meanings given in above Table. Real values are printed right justified within

their fields. If necessary, the number will be rounded off before it is displayed. For example, suppose

that the variable pi contains the value 3.141593. If this variable is displayed using the F7.3 format

descriptor, the displayed value will be bb3.142. On the other hand, if the displayed number includes

more significant digits than the internal representation of the number, extra zeros will be appended to

the right of the decimal point. If the variable pi is displayed with an F10.8 format descriptor, the

resulting value will be 3.14159300. If a real

number is too large to fit into the field in which it is to be printed, then the field is filled with asterisks.

For example, the following statements:

REAL :: a = -12.3, b = .123, c = 123.456

 WRITE (*,200) a, b, c

 WRITE (*,210) a, b, c

 200 FORMAT (2F6.3, F8.3)

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 105 |

 210 FORMAT (3F10.2)

will produce the output

 ****** 0.123 123.456

 -12.30 0.12 123.46

 ----|----|----|----|----|----|

 5 10 15 20 25 30

4.5.3 Real Output—The E Descriptor

Real data can also be printed in exponential notation using the E descriptor. Scientific notation is a

popular way for scientists and engineers to display very large or very small numbers. It consists of

expressing a number as a normalized value between 1 and 10 multiplied by 10 raised to a power.

To understand the convenience of scientific notation, let’s consider the following two examples from

chemistry and physics. Avogadro’s number is the number of atoms in a mole of a substance. It can be

written out as 602,000,000,000,000,000,000,000 or it can be expressed in scientific notation as 6.02 ×

1023. On the other hand, the charge on an electron is 0.0000000000000000001602 coulombs. This

number can be expressed in scientific notation as 1.602 × 10−19. Scientific notation is clearly a much

more convenient way to write these numbers!

The E format descriptor has the form

rEw.d

where r, w, and d have the meanings given in above Table. Unlike normal scientific notation, the real

values displayed in exponential notation with the E descriptor are normalized to a range between 0.1

and 1.0. That is, they are displayed as a number between 0.1 and 1.0 multiplied by a power of 10. For

example, the standard scientific notation for the number 4096.0 would be 4.096 × 103, while the

computer output

with the E descriptor would be 0.4096 × 104. Since it is not easy to represent exponents on a line

printer, the computer output would appear on the printer as

0.4096E+04.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 106 |

If a real number cannot fit into the field in which it is to be printed, then the field is filled with asterisks.

You should be especially careful with field sizes when working with the E format descriptor, since

many items must be considered when sizing the output field. For example, suppose that we want to print

out a variable in the E format with four significant digits of accuracy. Then a field width of 11

characters is required, as shown below: 1 for the sign of the mantissa, 2 for the zero and decimal point,

4 for the actual mantissa, 1 for the E, 1 for the sign of the exponent, and 2 for the exponent itself.

±0.ddddE±ee

In general, the width of an E format descriptor field must satisfy the expression

w ≥ d + 7 (5-1)

or the field may be filled with asterisks. The seven extra characters required are used as follows: 1 for

the sign of the mantissa, 2 for the zero and decimal point, 1 for the E,1 for the sign of the exponent, and

2 for the exponent itself.

For example, the following statements:

REAL :: a = 1.2346E6, b = 0.001, c = -77.7E10 , d = -77.7E10

 WRITE (*,200) a, b, c, d

 200 FORMAT (2E14.4, E13.6, E11.6)

will produce the output3

 0.1235E+07 0.1000E-02-0.777000E+12***********

----|----|----|----|----|----|----|----|----|----|----|

 5 10 15 20 25 30 35 40 45 50 55

4.5.4 Logical Output—The L Descriptor

The descriptor used to display logical data has the form

rLw

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 107 |

where r and w have the meanings given in above Table. The value of a logical variable can only be

.TRUE. or .FALSE.. The output of logical variable is either a T or an F, right justified in the output

field.

For example, the following statements:

LOGICAL :: output = .TRUE., debug = .FALSE.

WRITE (*,"(2L5)") output, debug

will produce the output

 T F

----|----|----|

 5 10 15

4.5.5 Character Output—The A Descriptor

Character data is displayed using the A format descriptor.

rA or rAw

where r and w have the meanings given in above Table . The rA descriptor displays character data in a

field whose width is the same as the number of characters being displayed, while the rAw descriptor

displays character data in a field of fixed width w.If the width w of the field is longer than the length of

the character variable, the variable is printed out right justified in the field. If the width of the field is

shorter than the length of the character variable, only the first w characters of the variable will be

printed out in the field.

For example, the following statements:

CHARACTER(len=17) :: string = 'This is a string.'

WRITE (*,10) string

WRITE (*,11) string

WRITE (*,12) string

10 FORMAT (' ', A)

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 108 |

11 FORMAT (' ', A20)

12 FORMAT (' ', A6)

will produce the output

This is a string.

 This is a string.

This i

----|----|----|----|----|

 5 10 15 20 25

4.5.6 Changing Output Lines—The Slash (/) Descriptor

The slash (/) descriptor causes the current output buffer to be sent to the printer, and a new output buffer

to be started. With slash descriptors, a single WRITE statement can display output values on more than

one line. Several slashes can be used together to skip several lines. The slash is one of the special

descriptors that does not have to be separated from other descriptors by commas. However, you may

use commas if you wish. For example, suppose that we need to print out the results of an experiment in

which we have measured the amplitude and phase of a signal at a certain time and depth. Assume that

the integer variable index is 10 and the real variables time, depth, amplitude, and phase are 300., 330.,

850.65, and 30., respectively. Then the statements

WRITE (*,100) index, time, depth, amplitude, phase

100 FORMAT (T20,'Results for Test Number ',I3,///, &

 'Time = ',F7.0/, &

 'Depth = ',F7.1,' meters',/, &

 'Amplitude = ',F8.2/ &,

 'Phase = ',F7.1)

generate six separate output buffers. The first buffer puts a title on the output. The next two output

buffers are empty, so two blank lines are printed. The final four output buffers contain the output for

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 109 |

one variable each, so the four values for time, depth, amplitude, and phase are printed on successive

lines.

Notice the 1X descriptors after each slash. These descriptors place a blank in the character of each

output buffer, so that each subsequent line starts in column 2.

4.5.7 Formats are Used during WRITEs

Most Fortran compilers verify the syntax of FORMAT statements and character constants containing

formats at compilation time, but do not otherwise process them. Character variables containing formats

are not even checked at compilation time for valid syntax, since the format may be modified

dynamically during program execution. In all cases, formats are saved unchanged as character strings

within the compiled program.

When Results for Test Number 10

Time = 300.

Depth = 330.0 meters

Amplitude = 850.65

Phase = 30.2

the program is executed, the characters in a format

 are used as a template to guide the operation of the formatted WRITE.

At execution time, the list of output variables associated with the WRITE statement is processed

together with the format of the statement. The program begins at the left end of the variable list and the

left end of the format, and scans from left to right, associating the first variable in the output list with

the first format descriptor in the format, and so forth. The variables in the output list must be of the

same type and in the same order as the format descriptors in the format, or a runtime error will occur.

Example:

A good way to illustrate the use of formatted WRITE statements is to generate and print out a table of

data. It generates the square roots, squares, and cubes of all integers between 1 and 10, and presents the

data in a table with appropriate headings.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 110 |

A Fortran program to generate a table of square roots, squares, and cubes.

Solution:

PROGRAM table

!

! Purpose:

! To illustrate the use of formatted WRITE statements. This

! program generates a table containing the square roots, squares,

! and cubes of all integers between 1 and 10. The table includes

! a title and column headings.

!

! Record of revisions:

! Date Programmer Description of change

!

IMPLICIT NONE

INTEGER :: cube ! The cube of i

INTEGER :: i ! Index variable

INTEGER :: square ! The square of i

REAL :: square_root ! The square root of i

! Print the title of the table on a new page.

WRITE (*,100)

100 FORMAT (T3, 'Table of Square Roots, Squares, and Cubes'/)

! Print the column headings after skipping one line.

WRITE (*,110)

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 111 |

(concluded)

110 FORMAT (T4,'Number',T13,'Square Root',T29,'Square',T39,'Cube')

WRITE (*,120)

120 FORMAT (T4,'======',T13,'===========',T29,'======',T39,'===='/)

! Generate the required values, and print them out.

DO i = 1, 10

square_root = SQRT (REAL(i))

 square = i**2

 cube = i**3

 WRITE (*,130) i, square_root, square, cube

 130 FORMAT (1X, T4, I4, T13, F10.6, T27, I6, T37, I6)

END DO

END PROGRAM table

This program uses the tab format descriptor to set up neat columns of data for the table. When this

program is compiled and executed using the Intel Fortran compiler, the results are

Table of Square Roots, Squares, and Cubes

 Number Square Root Square Cube

 ====== =========== ====== ====

 1 1.000000 1 1

 2 1.414214 4 8

 3 1.732051 9 27

 4 2.000000 16 64

 5 2.236068 25 125

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 112 |

 6 2.449490 36 216

 7 2.645751 49 343

 8 2.828427 64 512

 9 3.000000 81 729

 10 3.162278 100 1000

Example:

A capacitor is an electrical device that stores electric charge. It essentially consists of two flat plates

with an insulating material (the dielectric) between them. The capacitance of a capacitor is defined as

C = Q

V (5-2)

where Q is the amount of charge stored in a capacitor in units of coulombs and V is the

voltage between the two plates of the capacitor in volts. The units of capacitance are

farads (F), with 1 farad = 1 coulomb per volt. When a charge is present on the plates

of the capacitor, there is an electric field between the two plates. The energy stored in

this electric field is given by the equation

E = 1

2

CV2 (5-3)

where E is the energy in joules. Write a program that will perform one of the following

calculations:

1. For a known capacitance and voltage, calculate the charge on the plates, the number of electrons on

the plates, and the energy stored in the electric field.

2. For a known charge and voltage, calculate the capacitance of the capacitor, the number of electrons

on the plates, and the energy stored in the electric field.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 113 |

Solution

This program must be able to ask the user which calculation he or she wishes to perform, read in the

appropriate values for that calculation, and write out the results in a reasonable format. Note that this

problem will require us to work with very small and very large numbers, so we will have to pay special

attention to the FORMAT statements in the program.

For example, capacitors are typically rated in microfarads (μF or 10−6 F)

(pF or 10−12 F), and there are 6.241461 × 1018 electrons per coulomb of charge.

1. Define the problem.

 The problem may be succinctly stated as follows:

 (a) For a known capacitance and voltage, calculate the charge on a capacitor, the number of electrons

stored, and the energy stored in its electric field.

 (b) For a known charge and voltage, calculate the capacitance of the capacitor, the number of electrons

stored, and the energy stored in its electric field.

2. Define the inputs and outputs.

 There are two possible sets of input values to this program:

 (a) Capacitance in farads and voltage in volts.

 (b) Charge in coulombs and voltage in volts.

The outputs from the program in either mode will be the capacitance of the capacitor, the voltage across

the capacitor, the charge on the plates of the capacitor, and the number of electrons on the plates of the

capacitor. The output must be printed out in a reasonable and understandable format.

3. Algorithm Development.

 This program can be broken down into four major steps:

 Decide which calculation is required

 Get the input data for that calculation

 Calculate the unknown quantities

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 114 |

Write out the capacitance, voltage, charge and number of electrons.

The first major step of the program is to decide which calculation is required.There are two types of

calculations: Type 1 requires capacitance and voltage, whileType 2 requires charge and voltage. We

must prompt the user for the type of input data,read his or her answer, and then read in the appropriate

data. The pseudocode for these steps is:

Prompt user for the type of calculation "type"

WHILE

 Read type

 IF type == 1 or type == 2 EXIT

 Tell user of invalid value

End of WHILE

IF type == 1 THEN

 Prompt the user for the capacitance c in farads

 Read capacitance c

 Prompt the user for the voltage v in volts

 Read voltage v

ELSE IF type == 2 THEN

 Prompt the user for the charge "charge" in coulombs

 Read "charge"

 Prompt the user for the voltage v in volts

 Read voltage v

END IF

Next, we must calculate unknown values. For Type 1 calculations, the unknown values are charge, the

number of electrons, and the energy in the electric field, while for Type 2 calculations, the unknown

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 115 |

values are capacitance, the number of electrons, and the energy in the electric field. The pseudocode for

this step is shown below:

IF type == 1 THEN

 charge ← c * v

ELSE

 c ← charge / v

END IF

electrons ← charge * electrons_per_coulomb

energy ← 0.5 * c * v**2

where electrons_per_coulomb is the number of electrons per coulomb of charge

(6.241461 × 1018). Finally, we must write out the results in a useful format.

WRITE v, c, charge, electrons, energy

4. Turn the program completion.

The final Fortran program is:

Program to perform capacitor calculations.

PROGRAM capacitor

!

! Purpose:

! To calculate the behaviour of a capacitor as follows:

! 1. If capacitance and voltage are known, calculate

! charge, number of electrons, and energy stored.

(continued)

! 2. If charge and voltage are known, calculate capa-

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 116 |

! citance, number of electrons, and energy stored.

!

!

IMPLICIT NONE

! Data dictionary: declare constants

REAL, PARAMETER :: ELECTRONS_PER_COULOMB = 6.241461E18

! Data dictionary: declare variable types, definitions, & units

REAL :: c ! Capacitance of the capacitor (farads).

REAL :: charge ! Charge on the capacitor (coulombs).

REAL :: electrons ! Number of electrons on the plates of the capacitor

REAL :: energy ! Energy stored in the electric field (joules)

INTEGER :: type ! Type of input data available for the calculation:

 ! 1: C and V

 ! 2: CHARGE and V

REAL :: v ! Voltage on the capacitor (volts).

! Prompt user for the type of input data available.

WRITE (*, 100)

100 FORMAT (' This program calculates information about a ' &

 'capacitor.',/, ' Please specify the type of information',&

 ' available from the following list:',/,&

 ' 1 -- capacitance and voltage ',/,&

 ' 2 -- charge and voltage ',//,&

 ' Select options 1 or 2: ')

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 117 |

! Get response and validate it.

DO

 READ (*,*) type

 IF ((type == 1) .OR. (type == 2)) EXIT

 WRITE (*,110) type

 110 FORMAT (' Invalid response: ', I6, '. Please enter 1 or 2:')

END DO

! Get additional data based upon the type of calculation.

input: IF (type == 1) THEN

 ! Get capacitance.

 WRITE (*,'Enter capacitance in farads: ')

 READ (*,*) c

 ! Get voltage.

 WRITE (*,'Enter voltage in volts: ')

 READ (*,*) v

ELSE

(concluded)

 ! Get charge.

 WRITE (*,'Enter charge in coulombs: ')

 READ (*,*) charge

 ! Get voltage.

 WRITE (*,'Enter voltage in volts: ')

 READ (*,*) v

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 118 |

END IF input

! Calculate the unknown quantities.

calculate: IF (type == 1) THEN

 charge = c * v ! Charge

ELSE

 c = charge / v ! Capacitance

END IF calculate

electrons = charge * ELECTRONS_PER_COULOMB ! Electrons

energy = 0.5 * c * v**2 ! Energy

! Write out answers.

WRITE (*,120) v, c, charge, electrons, energy

120 FORMAT ('For this capacitor: ',/, &

 ' Voltage = ', F10.2, ' V',/, &

 ' Capacitance = ', ES10.3, ' F',/, &

 ' Total charge = ', ES10.3, ' C',/, &

 ' Number of electrons = ', ES10.3,/, &

 ' Total energy = ', F10.4, ' joules')

END PROGRAM capacitor

5. Test & Debug the program.

To test this program, we will calculate the answers by hand for a simple data set, and then compare the

answers to the results of the program. If we use a voltage of 100 V and a capacitance of 100 μF, the

resulting charge on the plates of the capacitor is 0.01 C, there are 6.241 × 1016 electrons on the

capacitor, and the energy stored is 0.5 joules.

Running these values through the program using both options 1 and 2 yields the following results:

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 119 |

C:\book\fortran>capacitor

This program calculates information about a capacitor.

Please specify the type of information available from the following list:

 1 -- capacitance and voltage

 2 -- charge and voltage

Select options 1 or 2:

1

Enter capacitance in farads:

100.e-6

Enter voltage in volts:

100.

(concluded)

For this capacitor:

 Voltage = 100.00 V

 Capacitance = 1.000E-04 F

 Total charge = 1.000E-02 C

 Number of electrons = 6.241E+16

 Total energy = .5000 joules

C:\book\fortran>capacitor

This program calculates information about a capacitor.

Please specify the type of information available from the following list:

 1 -- capacitance and voltage

 2 -- charge and voltage

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 120 |

Select options 1 or 2:

2

Enter charge in coulombs:

0.01

Enter voltage in volts:

100.

For this capacitor:

 Voltage = 100.00 V

 Capacitance = 1.000E-04 F

 Total charge = 1.000E-02 C

 Number of electrons = 6.241E+16

 Total energy = .5000 joules

6. FORtran Documenter

A great program for documenting fortran source code is FORD.

Documenting Fortran using Doxygen

Documentation can be created right from source code using Doxygen.

The commandline program doxygen creates the documentation using configuration files. The gui

program doxygen-wizard helps creating those files.

The source code needs to be documented using special comment syntax: !>, and !!.

One should always set OPTIMIZE_FOR_FORTRAN = YES within the configuration file.

Doxygen commands are usually ended by an empty comment line or a new doxygen command.

Note that support for Fortran is rather bad in doxygen. Even simple constructs such as public/privare

statements inside of types are not supported.

LaTeX

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 121 |

One can also include LaTeX code within the documentation. Doxygen's website gives detailed

information.

4.6 Summary:

List-directed input is carried out with the Fortran READ statements. The READ statement can read

input values into a set of variables from the keyboard. Listed-directed output is carried with the Fortran

WRITE statement. The WRITE statement can display the results of a set of expressions and character

strings. In general, WRITE displays the output on the screen. This is useful when data are not separated

by delimiters (spaces or commas) so that the standard unformatted READ command is inapplicable. A

Fortran format specification is a list of format elements describing the variable format (real number in

either decimal or exponential form), the width (number of characters) of each variable, and (optionally)

the number of decimal places.

4.7 Keyword:

Directed Input: List-directed input is carried out with the Fortran READ statements. The READ

statement can read input values into a set of variables from the keyboard.

Directed Output: Listed-directed output is carried with the Fortran WRITE statement. The WRITE

statement can display the results of a set of expressions and character strings. In general, WRITE

displays the output on the screen.

Format Specification: Listed-directed output is carried with the Fortran WRITE statement. The

WRITE statement can display the results of a set of expressions and character strings. In general,

WRITE displays the output on the screen.

Answer to check your progress

Check your Progress A

1 READ

2 READ

3 WRITE

Check your Progress B

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 122 |

1 I

2 F

3 A

4.8 Self Assessed Question:

1) What is directed input?

2) What is directed output?

3) What is format specification?

4.9 SUGGESTED READINGS

1. Computer Programming in Fortran 90 and 95 by V Rajaraman

2. Introduction to Programming with Fortran by Chivers, lan, Sleightholme, Jane

3. Fortran For Scientists and Engineers by Stephen J. Chapman, Mcgraw-Hill

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 123 |

Class : M.Sc. (Mathematics) Course Code : MAL 516

Subject : Programming with FORTRAN (Theory)

Chapter-5

CONTROL STRUCTURE

STRUCTURE

5.0 Objective

5.1 Structure of Fortran Program

 5.1.1 Declaration Section

 5.1.2 Execution Section

 5.1.3 Termination Section

 5.1.4 Program Style

 5.1.5 Compiling, Linking & Execution

5.2 Control Flow and Types

5.3 If Statements

5.4 If else statements

5.5 Nested If statements

5.6 Select Case statement

5.7 Looping

5.8 Do Loop

5.9 Do While Loop

5.10 Repeat Until Loop

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 124 |

5.11 GOTO

5.12 Summary

5.13 Keyword

5.14 Self Assessment Question

5.15 Suggested Readings

5.0 Objective:

After reading this chapter, you should be able to:

1) Understand flow of control statements.

2) Usage of switch statements.

3) Understand the concept of if, if else and nested if statements.

4) Understand the looping construct.

5.1 Structure of a Fortran Program

 Each Fortran program consists of a mixture of executable and nonexecutable statements, which must

occur in a specific order.

Example

A simple Fortran program.

PROGRAM my_first_program

PROGRAM my_first_program

! Purpose:

! To illustrate some of the basic features of a Fortran program.

!

! Declare the variables used in this program.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 125 |

INTEGER :: i, j, k ! All variables are integers

! Get two values to store in variables i and j

WRITE (*,*) 'Enter the numbers to multiply: '

READ (*,*) i, j

(concluded)

! Multiply the numbers together

k = i * j

! Write out the result.

WRITE (*,*) 'Result = ', k

! Finish up.

STOP

END PROGRAM my_first_program

This Fortran program, like all Fortran program units,1 is divided into three

sections:

1. The declaration section. This section consists of a group of nonexecutable statements at the beginning

of the program that define the name of the program and the number and types of variables referenced in

the program.

2. The execution section. This section consists of one or more statements describing the actions to be

performed by the program.

3. The termination section. This section consists of a statement or statements stopping the execution of

the program and telling the compiler that the program is complete.

Note that comments may be inserted freely anywhere within, before, or after the

program.

5.1.1 Declaration Section

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 126 |

The declaration section consists of the nonexecutable statements at the beginning of the program that

define the name of the program and the number and types of variables referenced in the program.

The first statement in this section is the PROGRAM statement. It is a non executable statement that

specifies the name of the program to the Fortran compiler. Fortran program names may be up to 63

characters long and contain any combination of alphabetic characters, digits, and the underscore (_)

character. However, the first character in a program name must always be alphabetic. If present, the

PROGRAM statement must be the first line of the program. In this example, the program has been

named my_first_program. The next several lines in the program are comments that describe the purpose

of the program. Next comes the INTEGER type declaration statement. This non-executable statement

will be described later in this chapter. Here, it declares that three integer variables called i, j, and k will

be used in this program.

5.1.2 Execution Section

The execution section consists of one or more executable statements describing the actions to be

performed by the program. The first executable statement in this program is the WRITE statement,

which writes out a message prompting the user to enter the two numbers to be multiplied together. The

next executable statement is a READ statement, which reads in the two integers supplied by the user.

The third executable statement instructs the computer to multiply the two numbers i and j together, and

to store the result in variable k. The final WRITE statement prints out the result for the user to see.

Comments may be embedded anywhere throughout the execution section.

 5.1.3 Termination Section

The termination section consists of the STOP and END PROGRAM statements. The STOP statement is

a statement that tells the computer to stop running the program. The END PROGRAM statement is a

statement that tells the compiler that there are no more statements to be compiled in the program.

The STOP statement takes one of the following forms:

STOP

STOP 3

STOP 'Error stop'

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 127 |

If the STOP statement is used by itself, execution will stop. If the STOP statement is used with a

number, that number will be printed out when the program stops, and will normally be returned to the

operating system as an error code. If the STOP statement is used with a character string, that string will

be printed out when the program stops.

When the STOP statement immediately precedes the END PROGRAM statement as in this

example, it is optional. The compiler will automatically generate a STOP command when the

END PROGRAM statement is reached. The STOP statement is therefore rarely used.

There is an alternate version of the STOP statement called ERROR STOP. This version stops the

program, but it also notifies the operating system that the program failed

to execute properly. An example might be:

ERROR STOP 'Cannot access database'

This version of the STOP statement was added in Fortran 2008, and it might be useful if you need to

inform an operating system script that a program failed abnormally.

5.1.4 Program Style

This example program follows a commonly used Fortran convention of capitalizing keywords such as

PROGRAM, READ, and WRITE, while using lowercase for the program variables. Names are written

with underscores between the words, as in my_first_ program above. It also uses capital letters for

named constants such as PI (π). This is not a Fortran requirement; the program would have worked just

as well if all capital letters or all lowercase letters were used. Since uppercase and lowercase letters are

equivalent in Fortran, the program functions identically in either case. Throughout this book, we will

follow this convention of capitalizing Fortran keywords and constants, and using lowercase for

variables, procedure names, etc. Some programmers use other styles to write Fortran programs. For

example, Java programmers who also work with Fortran might adopt a Java-like convention in which

keywords and names are in lowercase, with capital letters at the beginning of each word (sometimes

called “camel case”). Such a programmer might give this program the name myFirstProgram. This is an

equally valid way to write a Fortran program. It is not necessary for you to follow any specific

convention to write a Fortran program, but you should always be consistent in your programming style.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 128 |

Establish a standard practice, or adopt the standard practice of the organization in which you work, and

then follow it consistently in all of your programs.

5.1.5 Compiling, Linking & Loading

Before the sample program can be run, it must be compiled into object code with a Fortran compiler,

and then linked with a computer’s system libraries to produce an executable program. These two steps

are usually done together in response to a single programmer command. The details of compiling and

linking are different for every compiler and operating system. You should ask your instructor or consult

the appropriate manuals to determine the proper procedure for your system.

Figure 5.1 describe how fortran code is to be executed

Fortran programs can be compiled, linked, and executed in one of two possible modes: batch and

interactive. In batch mode, a program is executed without an input from or interaction with a user. This

is the way most Fortran programs worked in the early days. A program would be submitted as a deck of

punched cards or in a file, and it would be compiled, linked, and executed without any user interaction.

All input data for the program had to be placed on cards or put in files before the job was started, and all

output went to output files or to a line printer. By contrast, a program that is run in interactive mode is

compiled, linked, and executed while a user is waiting at an input device such as the computer keyboard

or a terminal. Since the program executes with the human present, it can ask for input data from the user

as it is executing, and it can display intermediate and final results as soon as they are computed. Today,

most Fortran programs are executed in interactive mode. However, some very large Fortran programs

that execute for days at a time are still run in batch mode.

5.2 CONTROL FLOW AND TYPES

Types of Control Statements:

There are three types of Control Statements. They are

 Compile Link

Fortran

Program
Object File Executable File

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 129 |

1) Branching

2) Looping

3) Jumping

Decision Control Statements

Decision making structures require that the programmer specify one or more conditions to be evaluated

or tested by the program, along with a statement or statements to be executed, if the condition is

determined to be true, and optionally, other statements to be executed if the condition is determined to

be false.

Following is the general form of a typical decision making structure found in most of the programming

languages –

 Flow chart for decision control statement

1) If statement

2) The If else statement

3) Nested if statement

4) Switch statement

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 130 |

5.3 IF STATEMENT

This is the simplest form of the control statement. It is very frequently used in allowing the flow of

program execution and decision making. An if… then… end if statement consists of a logical

expression followed by one or more statements.

Syntax:

IF(logical-expression) statementA

statementB

The if statement evaluates the test expression inside the parenthesis. If the test statement is evaluated to

true (non-zero), statements inside the body of if is executed. If the test expression is evaluated to false

(0), statements inside the body of if is skipped from execution. The test expressions are written with the

help of operators, which have already been described earlier in this book.

Flow chat for IF statement

5.4 If-else Statement:

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 131 |

An if… then statement can be followed by an optional else statement, which executes when the logical

expression is false.

Syntax:

If(test expression)

{

Block A;

}

else

{

Block B;

}

End if

If the test expression is true, codes inside the body of the if statement is executed and codes inside the

body of else statement is skipped. If the test expression is false, codes inside the body of the else

statement is executed and codes inside the body of if statement is skipped. The sequence of execution

for the flow of control for if-else is shown in the figure.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 132 |

Flow chart for If-Else Statement

Example:

INTEGER :: x

if (x .ge. 0) then

 y = sqrt(x)

 print *, y, " squared = ", x

else

 print *, "x has no square root"

end if

5.5 ELSE-IF LADER

An if statement construct can have one or more optional else-if constructs. When the if condition fails,

the immediately followed else-if is executed. When the else-if also fails, its successor else-if statement

(if any) is executed, and so on.

You can use one if or else if statement inside another if or else if statement(s).

Syntax:

IF (expression 1) THEN

 IF(expression 2) THEN

 ELSE

 ENDIF

ELSE

 IF(expression 3) THEN

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 133 |

 else

 ENDIF

ENDIF

(A further IF construct may appear in the then-block , if block, the else block or the else-if bock.

This is now a nested IF structure.)

Statements in either the then-block , the else-block or the elseif-block may be labelled but

jumps to such labelled statements are permitted only from within the block containing them. Entry into

a block-IF construct is allowed only via the initial IF statement. Transfer out of either the then-block

, the else-block or the elseif-block is permitted but only to a statement entirely outside of the

whole block defined by the IF...END IF statements. A transfer within the same block-IF between any of

the blocks is not permitted.

Certain types of statement, eg, END SUBROUTINE, END FUNCTION or END PROGRAM,

statement are not allowed in the then-block , the else-block or the elseif-block.

Check Your Progress C

1 ……… structures require that the programmer specify one or more conditions to be evaluated or

tested by the program

2 …………. statement evaluates the test expression inside the parenthesis.

3 …………. statement is a multiway branch statement.

5.6 Select Case Statement:

Select case statements are used as substitute in case of long if statements that compare a variable to

several integer values.

Select Case statement is a multiway branch statement. It provides an easy way of execution to different

parts of code based on the value of the expression. It is a control statement that allows a value to change

control of execution.

Syntax:

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 134 |

SELECT CASE (exp)

 CASE list-1

 statements-1

 CASE list-2

 statements-2

 CASE list-3

 statements-3

 CASE list-n

 statements-n

 CASE DEFAULT

 statements-DEFAULT

END SELECT

where statements-1, statements-2, statements-3, ..., statements-n and statements-DEFAULT are

sequences of executable statements, including the SELECT CASE statement itself, and selector is an

expression whose result is of type INTEGER, CHARACTER or LOGICAL (i.e., no REAL type can be

used for the selector). The label lists label-list-1, label-list-2, label-list-3, ..., and label-list-n are called

case labels.

A label-list is a list of labels, separated by commas. Each label must be one of the following forms. In

fact, three of these four are identical to an extent specifier for substrings:

value

value-1 : value-2

value-1 :

 : value-2

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 135 |

where value, value-1 and value-2 are constants or alias defined by PARAMETER. The type of these

constants must be identical to that of the selector.

• The first form has only one value

• The second form means all values in the range of value-1 and value-2. In this form, value-1 must be

less than value-2.

• The third form means all values that are greater than or equal to value-1

• The fourth form means all values that are less than or equal to value-2

The rule of executing the SELECT CASE statement goes as follows:

• The selector expression is evaluated

• If the result is in label-list-i, then the sequence of statements in statements-i are executed, followed by

the statement following END SELECT

• If the result is not in any one of the label lists, there are two possibilities:

o if CASE DEFAULT is there, then the sequence of statements in statements-DEFAULT are executed,

followed by the statement following END SELECT

o if there is no CASE DEFAULT is not there, the statement following END SELECT is executed.

There are some notes for writing good Fortran programs:

• The constants listed in label lists must be unique

• CASE DEFAULT is optional. But with a CASE DEFAULT, you are guaranteed that whatever the

selector value, one of the labels will be used. I strongly suggest to add a CASE DEFAULT in every

SELECT CASE statement.

• The place for CASE DEFAULT can be anywhere within a SELECT CASE statement; however, put it

at the end would be more natural.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 136 |

Flowchart for Select case Statement

Example:

The following uses Class to execute a selection. If Class is 1, Freshman is displayed; if Class is 2,

Sophomore is displayed; if Class is 3, Junior is displayed; if Class is 4, Senior is displayed; and if Class

is none of the above, Hm, I don't know is displayed. After displaying one of the above, Done is

displayed.

INTEGER :: Class

SELECT CASE (Class)

 CASE 1

WRITE(*,*) 'Freshman'

 CASE 2

WRITE(*,*) 'Sophomore'

 CASE 3

WRITE(*,*) 'Junior'

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 137 |

 CASE 4

WRITE(*,*) 'Senior'

 CASE DEFAULT

WRITE(*,*) "Hmmmm, I don't know"

END SELECT

WRITE(*,*) 'Done'

5.7 Loops:

There may be a situation, when you need to execute a block of code several number of times. In

general, statements are executed sequentially : The first statement in a function is executed first,

followed by the second, and so on.

Programming languages provide various control structures that allow for more complicated execution

paths.

A loop statement allows us to execute a statement or group of statements multiple times and following

is the general form of a loop statement in most of the programming languages –

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 138 |

Fortran provides the following types of loop constructs to handle looping requirements. Click the

following links to check their detail.

5.8Do-loop

The loop can be named and the exec-stmts could contain EXIT or CYCLE statements, however, a

WHILE clause cannot be used but this can be simulated with an EXIT statement if desired.

Loops can be written which cycle a fixed number of times.

Syntax:

DO control-var = initial, final [, step] statements

 END DO

The number of iterations, which is evaluated before execution of the loop begins, is calculated as

MAX(INT((final value - initial value + increment)/ increment),0)

in other words the loop runs from final value to initial value in steps of increment . If this gives

a zero or negative count then the loop is not executed .

If increment is absent it is assumed to be 1.

The iteration count is worked out as follows (adapted from the standard, [1]):

1. final value is calculated,

2. initial value is calculated,

3. increment , if present, is calculated,

4. the DO variable is assigned the value of final value ,

5. the iteration count is established (using the formula given above).

The execution cycle is performed as follows (adapted from the standard):

1. the iteration count is tested and if it is zero then the loop terminates.

2. if it is non zero the loop is executed.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 139 |

3. (conceptually) at the END DO the iteration count is decreased by one and the DO variable is

incremented by expr3 .

4. control passes to the top of the loop again and the cycle begins again.

For example,

 DO i = 1, 100, 1

 ...

 END DO

is a DO loop that will execute 10 times, it is exactly equivalent to

 DO i = 1, 100

 ...

 END DO

More complex examples may involve expressions and loops running from high to low:

 DO i1 = 24, k*j, -1

 DO i2 = k, k*j, j/k

 ...

 END DO

 END DO

An indexed loop could be achieved using an induction variable and EXIT statement, however, the

indexed DO loop is better suited as there is less scope for error.

The DO variable cannot be assigned to within the loop.

Example:

INTEGER :: N, k

READ(*,*) N

WRITE(*,*) “Odd number between 1 and “, N

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 140 |

DO k = 1, N, 2

WRITE(*,*) k

END DO

5.9 Block Do Statement Loop

Repeats a statement or group of statements while a given condition is true. It tests the condition before

executing the loop body.

Syntax:

label IF (logical-expression) THEN

 statement block

 GO TO label

 END IF

The loop only executes if the logical expression evaluates to .TRUE.. Clearly, here, the values of a or b

must be modified within the loop otherwise it will never terminate.

The above loop is functionally equivalent to,

DO;

....

 IF (a .NE. b) EXIT

END DO

The loop only executes if the logical expression evaluates to .TRUE.. Clearly, here, the values of a or b

must be modified within the loop otherwise it will never terminate.

EXIT and CYCLE can still be used in a DO WHILE loop, just as there could be multiple EXIT and

CYCLE statements in a regular loop.

Example:

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 141 |

10 IF (Z .GE. 0D0) THEN

 Z = Z - SQRT(Z)

 GO TO 10

 END IF

The statement labelled 10 is a block IF. If the value stored in the variable Z is non-negative, then the

statement block in the block IF is executed. In this case, the value of Z - SQRT(Z) is calculated and

assigned to the variable Z. Then the unconditional GO TO statement is encountered and control is

passed out of the body of block IF and back to the statement labelled with the number 10 which is the

beginning of the block IF. This loop continues until the logical expression Z .GE. 0D0 is .FALSE. at

which time the loop is finished and control passes on to the next executable statement past the END IF.

5.10 Repeat until Loop:

Another type of loop is the repeat-until loop. This loop iterates one or more times. Unlike the do-while

loop, the repeat-until loop tests at the bottom of the loop so it always executes at least once. Again,

FORTRAN does not have a formal repeat-until loop but it is easy to construct one using IF and GO TO

statements.

Syntax:

label CONTINUE

 statement block

 IF (logical-expression) GO TO label

Example:

 10 CONTINUE

 WRITE(*,*)'Enter a value 1-12 for the month'

 READ(*,*)MONTH

 IF (MONTH .LT. 1 .OR. MONTH .GT. 12) GO TO 10

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 142 |

The statement labelled 10 is a CONTINUE statement which is often used at the beginning or end of a

loop structure. This program fragment executes the CONTINUE statement (which does nothing) and

then prints out the statement Enter a value 1-12 for the month. The program then reads in a value from

the standard input device and stores it in the variable MONTH. At this point MONTH is tested to see if

it is between the values of 1 and 12 inclusive. If it is, then control passes to the next executable

statement, but if it isn't, then the GO TO 10 statement is executed and the program returns to the

CONTINUE statement. The program then goes through the WRITE and READ statements again and

tests the new value of MONTH. The program will not break out of this loop until MONTH has a legal

value.

5.11 GOTO Statement:

The assigned GOTO statement causes a transfer of control to the branch target statement indicated by a

variable that was assigned a statement label in an ASSIGN statement. If the parenthesized list of labels

is present, the variable must be one of the labels in the list.

Syntax

GOTO label

Where:

label is given to that statement where it needs to be transfeered.

labels is a comma-separated list of statement labels.

Remarks

At the time of execution of the GOTO statement, assign-variable must be defined with the value of a

label of a branch target statement in the same scoping unit.

The assigned GOTO statement is a construct created in the early days of Fortran, and was suitable for

the tiny programs which the machines of that era were able to execute. As hardware got better and

programs grew larger, the assigned GOTO statement was identified as a major contributor to a logic

snarled condition known as "spaghetti code", which made a program difficult to read and debug. The

assigned GOTO statement may be replaced by the CASE Construct or the IF Construct. Although the

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 143 |

assigned GOTO statement is obsolescent and should never be used when writing new code, it is fully

supported.

Example

 assign 10 to i

 goto 20

 20 assign 30 to i

 goto i

 10 write(*,*) " assigned goto construct"

 assign 20 to i

 goto i, (10,20,30)

 30 continue

Check your Progress B

1 ……….. are used to execute a block of code several number of times.

2 ………….repeats a statement or group of statements while a given condition is true.

3 …………… statement causes a transfer of control to the branch target statement.

Examples:

The marks distribution of a course is: Attendance - 10%, Class Tests - 20%, Midterm Exam - 20% and

Final Exam - 50%. The grades given are: A for 90%, B for 80% and 90%, C for 70% and 80%, D for

60% and 70%, F for 60%. If the teacher takes 40 classes and if Class Tests, Midterm and Final Exam

have full marks of 100 each, write a program to calculate a student’s grade.

Solution:

REAL MT

PRINT*,'ENTER

AT,CT,MT,FE'

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 144 |

READ*,AT,CT,MT,FE

TOT=AT*10/40+CT*20/100+MT*20/100+FE*50/100

PRINT*,'TOTAL IS',TOT

IF(TOT>=90) THEN

PRINT*,'GRADE IS A'

ELSE

IF(TOT>=80)THEN

'GRADE IS B'

ELSE

 IF(TOT>=70)THEN

 PRINT*,'GRADE IS C'

 ELSE

 IF(TOT>=60)THEN

 PRINT*,'GRADE IS D'

 ELSE

 PRINT*,'GRADE IS F'

 ENDIF

 ENDIF

ENDIF

ENDIF

END

Example

Program for calculating the cylinder area?

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 145 |

Solution:

program cylinder

! Calculate the surface area of a cylinder.

!

! Declare variables and constants.

! constants=pi

! variables=radius squared and height

 implicit none ! Require all variables to be explicitly declared

 integer :: ierr

 character(1) :: yn

 real :: radius, height, area

 real, parameter :: pi = 3.141592653589793

 interactive_loop: do

! Prompt the user for radius and height

! and read them.

 write (*,*) 'Enter radius and height.'

 read (*,*,iostat=ierr) radius,height

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 146 |

! If radius and height could not be read from input,

! then cycle through the loop.

 if (ierr /= 0) then

 write(*,*) 'Error, invalid input.'

 cycle interactive_loop

 end if

! Compute area. The ** means "raise to a power."

 area = 2*pi * (radius**2 + radius*height)

! Write the input variables (radius, height)

! and output (area) to the screen.

 write (*,'(1x,a7,f6.2,5x,a7,f6.2,5x,a5,f6.2)') &

 'radius=',radius,'height=',height,'area=',area

 yn = ' '

 yn_loop: do

 write(*,*) 'Perform another calculation? y[n]'

 read(*,'(a1)') yn

 if (yn=='y' .or. yn=='Y') exit yn_loop

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 147 |

 if (yn=='n' .or. yn=='N' .or. yn==' ') exit interactive_loop

 end do yn_loop

 end do interactive_loop

end program cylinder

Example:

Program to get the summations?

Solution:

! sum.f90

! Performs summations using in a loop using EXIT statement

! Saves input information and the summation in a data file

program summation

implicit none

integer :: sum, a

print*, "This program performs summations. Enter 0 to stop."

open(unit=10, file="SumData.DAT")

sum = 0

do

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 148 |

 print*, "Add:"

 read*, a

 if (a == 0) then

 exit

 else

 sum = sum + a

 end if

 write(10,*) a

end do

print*, "Summation =", sum

write(10,*) "Summation =", sum

close(10)

end

When executed, the console would display the following:

 This program performs summations. Enter 0 to stop.

 Add:

1

 Add:

2

 Add:

3

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 149 |

 Add:

0

 Summation = 6

And the file SumData.DAT would contain:

1

2

3

Summation = 6

5.12 Summary:

Decision control statements are used to make a decision by checking the condition, whether true for

false. The flow of control for a program based on the value of test expression inside the if statement. If,

if else, nested if and goto statements are decision making statements are available. In this we also use

the branching concept. Branching statement is used to repeat the loop again and again till the condition

is satisfied.

5.13 Keywords:

If: It is a decision control statement. It is always executed whenever there is a non zero value for a test

expression.

If-else: If else is a decision control statement where one of the part get executed either from the if block

or from the else block.

Select Case: It is a type of control statement, which allows to make a decision from multiple choices.

 Do Loop: This construct enables a statement, or a series of statements, to be carried out iteratively,

while a given condition is true.

Do-While Loop: Repeats a statement or group of statements while a given condition is true. It tests the

condition before executing the loop body.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 150 |

Answer to check your Progress

Check your Progress C

1 Decision control

2 if

3 Select case

5.14 Self Assessment Questions:

1) What is a control statement?

2) Describe decision control statements.

3) Explain the concept of nested if in detail. What is the purpose of Select case?

4) What is loop? Explain in detail?

5.15 SUGGESTED READINGS

1. Computer Programming in Fortran 90 and 95 by V Rajaraman

2. Introduction to Programming with Fortran by Chivers, lan, Sleightholme, Jane

3. Fortran For Scientists and Engineers by Stephen J. Chapman, Mcgraw-Hill

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 151 |

Class : M.Sc. (Mathematics) Course Code : MAL 516

Subject : Programming with FORTRAN (Theory)

Lesson-6

OPERATORS & EXPRESSION

STRUCTURE

6.0 Objective

6.1 Operators

 6.1.1 Arithmetic Operators………………….

 6.1.2 Character Operator

 6.1.3 Relational Operators…………………….

 6.1.4 Logical Operators……………………….

6.2 Operators Precedence

6.3 Assignment Statement

 6.3.1 Arithmetic Assignment…………………

 6.3.2 Logical Assignment…………………….

 6.3.3 Character Assignment…………………….

 6.3.4 Record Assignment……………………….

6.4 Summary

6.5 Keyword

6.6 Self Assessment Question

6.7 Suggested Readings

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 152 |

6.0 Objective:

After reading this chapter, you should be able to:

1) Understand the concept of arithmetic operator.

2) Understand the concept relational operators.

3) Understand the concept of logical operators.

4) Understand the concept of assignment statement.

6.1 Operators:

An operator is a symbol that tells the compiler to perform specific mathematical or logical

manipulations. Fortran provides the following types of operators −

1) Arithmetic Operators

2) Relational Operators

3) Logical Operators

Let us look at all these types of operators one by one.

6.1.1Arithmetic Operators

Following table shows all the arithmetic operators supported by Fortran. Assume variable A holds 5 and

variable B holds 3 then −

Show Examples

Sno. Operator Description Example

1. + Addition Operator, adds two

operands.

A + B will give 8

2. - Subtraction Operator, subtracts

second operand from the first.

A - B will give 2

3. * Multiplication Operator, multiplies

both operands.

A * B will give 15

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 153 |

4. / Division Operator, divides

numerator by de-numerator.

A / B will give 1

5. **

Exponentiation Operator, raises one

operand to the power of the other.

A ** B will give 125

6 (Parenthesis

Example:

Consider an expression: 2x3+4x2+2x+10

A correct syntactic translation is 2 * x **3 +4 * x **2 +2 * x +10

It is an inefficient way of writing a expression for computer evaluation as it involves a total of 3

additional operators and 7 multiplication operators. Another technique of writing a expression require

far lesser number of arithmetic operations and is given below:

2x3+4x2+2x+10=10+2x+4x2+2x3

 =10+2x(1+2x+x2)

 =10+2x(1+x(2+x))

Translated into FORTRAN is

 10+2 * x * (1+x * (2+x))

The above expression requires only 3 addition and 3 multiplication. However this expression is efficient

and less readable. Errors could be made in parenthesizing. Whenever there are large number of

parentheses in an expression one check is to separately count the number of left and right parentheses.

These count should be equal.

6.1.2Character Operator:

A character expression yields a character string value on evaluation. The simplest form of a character

expression can be one of these types of characters:

• constant

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 154 |

• variable reference

• array element reference

• substring reference

• function reference

Construct complicated character expressions from one or more operands together with the concatenate

operator and parentheses.

Concatenate Operator

The concatenate operator (//) is the only character operator defined in Fortran. A character expression

formed from the concatenation of two character operands x1 and x2 is specified as

x1 // x2

The result of this operation is a character string with a value of x1 extended on the right with the value

of x2. The length of the result is the sum of the lengths of the character operands. For example,

'HEL' // 'LO2'

The result of the above expression is the string HELLO2 of length six.

Character Operands:

A character operand must identify a value of type character and must be a character expression. The

basic component in a character expression is the character primary. The forms of a character primary

are

• character constant

• symbolic name of a character constant

• character variable reference

• character array element reference

• character substring reference

• character function reference

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 155 |

• character expression enclosed in parentheses

A character expression consists of one or more character primaries separated by the concatenation

operator. Its forms are

• character primary

• character expression // character primary

In a character expression containing two or more concatenation operators, the primaries are combined

from left to right. Thus, the character expression

'A' // 'BCD' // 'EF'

is interpreted the same as

('A' // 'BCD') // 'EF'

The value of the above character expression is ABCDEF.

Except in a character assignment statement, concatenation of an operand with an asterisk (*) as its

length specification is not allowed unless the operand is the symbolic name of a constant.

6.1.3 Relational Operators:

Following table shows all the relational operators supported by Fortran. Assume variable A holds 10

and variable B holds 20, then −

Show Examples

Sno. Operator Equivalent Description Example

1. == .eq. Checks if the values of two

operands are equal or not, if yes

then condition becomes true.

(A == B) is not

true.

2. /= .ne. Checks if the values of two

operands are equal or not, if

(A != B) is true.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 156 |

values are not equal then

condition becomes true.

3. > .gt. Checks if the value of left operand

is greater than the value of right

operand, if yes then condition

becomes true.

(A > B) is not

true.

4. < .lt. Checks if the value of left operand

is less than the value of right

operand, if yes then condition

becomes true.

(A < B) is true.

5. >= .ge. Checks if the value of left operand

is greater than or equal to the

value of right operand, if yes then

condition becomes true.

(A >= B) is not

true.

6. <= .le. Checks if the value of left operand

is less than or equal to the value

of right operand, if yes then

condition becomes true.

(A <= B) is

true.

A relational expression yields a logical value of either .TRUE. or .FALSE. on evaluation and

comparison of two arithmetic expressions or two character expressions. A relational expression can

appear only within a logical expression.

Table below lists the Fortran relational operators. Arithmetic and character operators are evaluated

before relational operators.

 Relational Operands:

The operands of a relational operator can be arithmetic or character expressions. The relational

expression requires exactly two operands and is written in the following form:

e1 relop e2

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 157 |

where

e1 and e2 are arithmetic or character expressions.

relop is the relational operator.

Note: Both e1 and e2 must be the same type of expression, either arithmetic or character.

The result of a relational expression is of type logical, with a value of .TRUE. or .FALSE.. The manner

in which the expression is evaluated depends on the data type of the operands.

Arithmetic Relational Expression:

In an arithmetic relational expression, e1 and e2 must each be an integer, real, double precision,

complex, or double complex expression. relop must be a relational operator.

The following are examples of arithmetic relational expressions:

(a + b) .EQ. (c + 1)

HOURS .LE. 40

You can use complex type operands only when specifying either the .EQ. or .NE. relational operator.

An arithmetic relational expression has the logical value .TRUE. only if the values of the operands

satisfy the relation specified by the operator.

Otherwise, the values is .FALSE.

If the two arithmetic expressions e1 and e2 differ in type, the expression is evaluated as follows:

((e1) - (e2)) relop 0

where the value 0 (zero) is of the same type as the expression ((e1)- (e2)) and the type conversion rules

apply to the expression. Do not compare a double precision value with a complex value.

Character Relational Expression:

In a character relational expression, e1 and e2 are character expressions and relop is a relational

operator.

The following is an example of a character relational expression:

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 158 |

NAME .EQ. 'HOMER'

A character relational expression has the logical value .TRUE. only if the values of the operands satisfy

the relation specified by the operator. Otherwise, the value is .FALSE..

The result of a character relational expression depends on the collating sequence as follows:

• If e1 and e2 are single characters, their relationship in the collating sequence determines the value of

the operator. e1 is less than or greater than e2 if e1 is before or after e2, respectively, in the collating

sequence.

• If either e1 or e2 are character strings with lengths greater than 1, corresponding individual characters

are compared from left to right until a relationship other than .EQ. can be determined.

• If the operands are of unequal length, the shorter operand is extended on the right with blanks to the

length of the longer operand for the comparison.

• If no other relationship can be determined after the strings are exhausted, the strings are equal.

The collating sequence depends partially on the processor; however, equality tests .EQ. and .NE. do not

depend on the processor collating sequence and can be used on any processor.

6.1.4 Logical Operators:

Logical operators in Fortran work only on logical values .true. and .false.

The following table shows all the logical operators supported by Fortran. Assume variable A holds

.true. and variable B holds .false. , then −

Show Examples

Sno. Operator Description Example

1. .and. Called Logical AND operator. If

both the operands are non-zero,

then condition becomes true.

(A .and. B) is false.

2. .or. Called Logical OR Operator. If

any of the two operands is non-

(A .or. B) is true.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 159 |

zero, then condition becomes

true.

3. .not. Called Logical NOT Operator.

Use to reverses the logical state

of its operand. If a condition is

true then Logical NOT operator

will make false.

!(A .and. B) is true.

4.

.eqv. Called Logical EQUIVALENT

Operator. Used to check

equivalence of two logical

values.

(A .eqv. B) is false.

5. .neqv Called Logical NON-EQUIVALENT

Operator. Used to check non-

equivalence of two logical values.

(A .neqv. B) is

true.

A logical expression specifies a logical computation that yields a logical value. The simplest form of a

logical expression is one of the following:

• logical constant

• logical variable reference

• logical array element reference

• logical function reference

• relational expression

Construct complicated logical expressions from one or more logical operands together with logical

operators and parentheses.

Table below defines the Fortran logical operators.

Table: Logical Operators

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 160 |

All logical operators require at least two operands, except the logical negation operator .NOT. , which

requires only one.

A logical expression containing two or more logical operators is evaluated based on a precedence

relation between the logical operators. This precedence, from highest to lowest, is

• .NOT.

• .AND.

• .OR.

• .EQV. and .NEQV.

For example, in the following expression

W .NEQV. X .OR. Y .AND. Z

the operators are executed in the following sequence:

1. Y .AND. Z is evaluated first (A represents the result).

2. X .OR. A is evaluated second (B represents the result).

3. W .NEQV. B is evaluated to produce the final result.

You can use parentheses to override the precedence of the operators.

Logical Operands

Logical operands specify values with a logical data type. The forms of a logical operands are

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 161 |

• logical primary

• logical factor

• logical term

• logical disjunct

• logical expression

Logical Primary:

The logical primary is the basic component of a logical expression. The forms of a logical primary are

• logical constant

• symbolic name of a logical constant

• integer or logical variable reference

• logical array element reference

• integer or logical function reference

• relational expression

• integer or logical expression in parentheses

When an integer appears as an operand to a logical operator, the other operand is promoted to type

integer if necessary and the operation is performed on a bit-by-bit basis producing an integer result.

Whenever an arithmetic datum appears in a logical expression, the result of that expression will be of

type integer because of type promotion rules. If necessary, the result can be converted back to

LOGICAL.

Do not specify two logical operators consecutively and do not use implied logical operators.

Logical Factor:

The logical factor uses the logical negation operator .NOT. to reverse the logical value to which it is

applied. For example, applying .NOT. to a false relational expression makes the expression true.

Therefore, if UP is true,

.NOT. UP is false. The logical factor has the following forms:

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 162 |

• logical primary

• .NOT. logical primary

Logical Term:

The logical term uses the logical conjunct operator .AND. to combine logical factors. It takes the forms

• Logical factor

• Logical term .AND. logical factor

In evaluating a logical term with two or more .AND. operators, the logical factors are combined from

left to right. For example, X .AND. Y .AND. Z has the same interpretation as (X .AND. Y) .AND. Z.

Logical Disjunct:

The logical disjunct is a sequence of logical terms separated by the .OR. operator and has the following

two forms:

• Logical term

• Logical disjunct .OR. logical term

In an expression containing two or more .OR. operators, the logical terms are combined from left to

right in succession. For example, the expression X.OR. Y .OR. Z has the same interpretation as (X .OR.

Y) .OR. Z.

Logical Expression:

At the highest level of complexity is the logical expression. A logical expression is a sequence of

logical disjuncts separated by the .EQV., .NEQV., or .XOR. operators. Its forms are

• logical disjunct

• logical expression .EQV. logical disjunct

• logical expression .NEQV. logical disjunct

The logical disjuncts are combined from left to right when a logical expression contains two or more

.EQV., .NEVQ. operators.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 163 |

A logical constant expression is a logical expression in which each primary is a logical constant, the

symbolic name of a logical constant, a relational expression in which each primary is a constant, or a

logical constant expression enclosed in parentheses. A logical constant expression can contain

arithmetic and character constant expressions but not variables, array elements, or function references.

Interpretation of Logical Expressions:

In general, logical expressions containing two or more logical operators are executed according to the

hierarchy of operators described previously, unless the order has been overridden by the use of

parentheses. Table below defines the form and interpretation of the logical expressions.

Table: Truth Table

6.2 Operators & Precedence:

Operator precedence determines the grouping of terms in an expression. This affects how an expression

is evaluated. Certain operators have higher precedence than others; for example, the multiplication

operator has higher precedence than the addition operator.

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher precedence than

+, so it first gets multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with the lowest appear

at the bottom. Within an expression, higher precedence operators will be evaluated first.

Show Examples

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 164 |

Sno. Category Operator Associativity

1. Logical NOT and

negative sign

.not. (-) Left to right

2. Exponentiation ** Left to right

3. Multiplicative * / Left to right

4. Additive + - Left to right

5. Relational < <= > >= Left to right

6. Equality == /= Left to right

7. Logical AND .and. Left to right

8. Logical OR .or. Left to right

9. Assignment = Right to left

Check Your Progress A

1 ………………. must identify a value of type character and must be a character expression.

2 …………. in Fortran work only on values .true. and .false.

3 The logical term uses the logical …………………. to combine logical factors

6.3 Assignment Statement:

The assignment statement assigns a value to a variable, substring, array element, record, or record field.

v = e

Parameter Description

V Variable, substring, array element, record,

or record field

E Expression giving the value to be assigned

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 165 |

6.3.1 Arithmetic Assignment:

v is of numeric type and is the name of a variable, array element, or record field.

e is an arithmetic expression, a character constant, or a logical expression. Assigning logical to

numerics is nonstandard, and may not be portable; the resultant data type is, of course, the data type of

v.

Execution of an arithmetic assignment statement causes the evaluation of the expression e, and

conversion to the type of v (if types differ), and assignment of v with the resulting value typed

according to the following table.

Type of v Type of e

INTEGER*2, INTEGER*4, or INTEGER*8

REAL

REAL*8

REAL*16 (SPARC only)

DOUBLE PRECISION

COMPLEX*8

COMPLEX*16

COMPLEX*32 (SPARC only)

INT(e)

REAL(e)

REAL*8

QREAL(e) (SPARC only)

DBLE(e)

CMPLX(e)

DCMPLX(e)

QCMPLX(e) (SPARC only)

Example:

REAL A,B

DOUBLE PRECISION V

V=A*B

The above code is compiled exactly as if it were the following:

REAL A,B

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 166 |

DOUBLE PRECISION V

V=DBLE(A*B)

6.3.2 Logical Assignment:

v is the name of a variable, array element, or record field of type logical.

e is a logical expression, or an integer between -128 and 127, or a single character constant.

Execution of a logical assignment statement causes evaluation of the logical expression e and

assignment of the resulting value to v. If e is a logical expression (rather than an integer between -128

and 127, or a single character constant), then e must have a value of either true or false.

Logical expressions of any size can be assigned to logical variables of any size. The section on the

LOGICAL statement provides more details on the size of logical variables.

Example:

LOGICAL B1*1, B2*1

 LOGICAL L3, L4

 L4 = .TRUE.

 B1 = L4

 B2 = B1

6.3.3 Character Assignment:

The constant can be a Hollerith constant or a string of characters delimited by apostrophes (') or quotes

("). The character string cannot include the control characters Control-A, Control-B, or Control-C; that

is, you cannot hold down the Control key and press the A, B, or C keys. If you need those control

characters, use the char() function.

If you use quotes to delimit a character constant, then you cannot compile with the -xl option, because,

in that case, a quote introduces an octal constant. The characters are transferred to the variables without

any conversion of data, and may not be portable.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 167 |

Character expressions which include the // operator can be assigned only to items of type

CHARACTER. Here, the v is the name of a variable, substring, array element, or record field of type

CHARACTER; e is a character expression.

Execution of a character assignment statement causes evaluation of the character expression and

assignment of the resulting value to v. If the length of e is more than that of v, characters on the right

are truncated. If the length of e is less than that of v, blank characters are padded on the right.

Example:

CHARACTER BELL*1, C2*2, C3*3, C5*5, C6*6

 REAL Z

 C2 = 'z'

 C3 = 'uvwxyz'

 C5 = 'vwxyz'

 C5(1:2) = 'AB'

 C6 = C5 // C2

 BELL = CHAR(7) Control Character (^G)

6.3.4 Record Assignment:

v and e are each a record or record field.

The e and v must have the same structure. They have the same structure if any of the following occur:

• Both e and v are fields with the same elementary data type.

• Both e and v are records with the same number of fields such that corresponding fields are the same

elementary data type.

• Both e and v are records with the same number of fields such that corresponding fields are

substructures with the same structure as defined in 2, above.

The sections on the RECORD and STRUCTURE statements have more details on the structure of

records.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 168 |

Check your Progress B

1 ……………… assigns a value to a variable, substring, array element, record, or record field.

2 ……….. containing two or more logical operators are executed according to the hierarchy of

operators

3 Higher level of complexity is the …………….

Example:

 STRUCTURE /PRODUCT/

 INTEGER*4 ID

 CHARACTER*16 NAME

 CHARACTER*8 MODEL

 REAL*4 COST

 REAL*4 PRICE

 END STRUCTURE

 RECORD /PRODUCT/ CURRENT, PRIOR, NEXT, LINE(10)

 CURRENT = NEXT Record to record

 LINE(1) = CURRENT Record to array element

 WRITE (9) CURRENT Write whole record

 NEXT.ID = 82 Assign a value to a field

Example:

Program to add two numbers?

Solution:

Implicit none

real, parameter::a=20

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 169 |

real, parameter:: b=30

integer :: c

c= a+ b

write(*, *) This result is:’, c

end program addition

 This program will give the result

 C=50

Example:

Program to subtract two numbers?

Solution:

Implicit none

real, parameter::a=50

real, parameter:: b=30

integer :: c

c= a- b

write(*, *) This result is:’, c

end program addition

 This program will give the result

 C=20

Example:

Program to multiply two numbers?

Solution:

Implicit none

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 170 |

real, parameter::a=20

real, parameter:: b=30

integer :: c

c= a* b

write(*, *) This result is:’, c

end program addition

 This program will give the result

 C=600

Example:

Program to divide two numbers?

Solution:

Implicit none

real, parameter::a=6

real, parameter:: b=3

integer :: c

c= a/ b

write(*, *) This result is:’, c

end program addition

 This program will give the result

 C=2

Example:

Program to check the two numbers are equal or not.

Solution:

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 171 |

Implicit none

real, parameter::a=6

real, parameter:: b=3

if(a==b) then

write(*,*)”Numbers are equal. ”

else

write(*,*)” Numbers are not equal.”

end if

 This program will give the result

Numbers are not equal.

Example:

Program to find the largest numbers in between the two.

Solution:

Implicit none

real, parameter::a=6

real, parameter:: b=3

if(a .gt. b) then

write(*,*)” a is greater.”

else

write(*,*)”b is greater”

end if

 This program will give the result

a is greater.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 172 |

Example:

Program to find the smallest numbers in between the two.

Solution:

Implicit none

real, parameter::a=6

real, parameter:: b=3

if(a .lt. b) then

write(*,*)” a is smaller.”

else

write(*,*)”b is smaller”

end if

 This program will give the result

b is smaller.

Example:

Some combinations of both integer and logical type:

COMPLEX C1 / (1.0, 2.0) /

 INTEGER*2 I1, I2, I3

 LOGICAL L1, L2, L3, L4, L5

 REAL R1 / 1.0 /

 DATA I1 / 8 /, I2 / 'W' /, I3 / 0 /

 DATA L1/.TRUE./, L2/.TRUE./, L3/.TRUE./, L4/.TRUE./,

 & L5/.TRUE./

 L1 = L1 + 1

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 173 |

 I2 = .NOT. I2

 L2 = I1 .AND. I3

 L3 = I1 .OR. I2

 L4 = L4 + C1

 L5 = L5 + R1

6.4 Summary:

An operator is a symbol that tells the compiler to perform specific mathematical or logical

manipulations. Fortran provides the following types of operators- Arithmetic, Logical, Relational. The

assignment statement assigns a value to a variable, substring, array element, record, or record field.

There are different type of assignment statements are: Arithmetic assignment, logical assignment,

relational assignment.

6.5 Keyword:

Arithmetic Operator: It takes numerical value as their operands and return a single numerical value.

Logical Operator: It is used to perform logical operation on the expression.

Relational Operator: It is used to compare values between two expression.

Assignment Statement: Assign the value to a variable we use assignment statement.

Answer to check your progress

Check your Progress A

1 Character Operand

2 Logical operators

3 conjunct operator .AND.

Check your Progress B

1 Assignment statement

2 Logical Expression

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 174 |

3 logical expression

6.6 Self Assessment Question:

1) Describe the assignment statement?

2) Explain the concept of arithmetic operators?

3) Explain the concept of logical operators?

4) Explain the concept of relational operators?

6.7 SUGGESTED READINGS

1. Computer Programming in Fortran 90 and 95 by V Rajaraman

2. Introduction to Programming with Fortran by Chivers, lan, Sleightholme, Jane

3. Fortran For Scientists and Engineers by Stephen J. Chapman, Mcgraw-Hill

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 175 |

Class : M.Sc. (Mathematics) Course Code : MAL 516

Subject : Programming with FORTRAN (Theory)

CHAPTER-7

ARRAYS & STRING

STRUCTURE

7.0 Objectives

7.1 Introduction

7.2 Declaring Arrays of Fixed Size

7.3 Assigning values

7.4 Procedure

 7.4.1 Passing arrays to Procedure

7.5 Array Sections

7.6 Variable size Arrays

 7.6.1 Use of Multidimensional array

 7.6.2 Where Statement

7.7 Strings

7.8 String Declaration

7.9 String Operation

 7.9.1String Concatenation

 7.9.2 Extracting Substring

 7.9.3 Trimming String

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 176 |

 7.9.4 Left/ Right Adjustment of String

 7.9.5 Searching of Substring

7.10 Summary

7.11 Keywords

7.12 Self-Assessment Questions

7.13 Suggested Readings

7.0 OBJECTIVES:

After reading this lesson, you should be able to:

1) Define the arrays and how they are initialized.

2) Explain the concept of fixed size and variable size arrays.

3) Define string.

4) Understand the concept of string operations?

7.1 Introduction

Arrays can store a fixed-size sequential collection of elements of the same type. An array is used to

store a collection of data, but it is often more useful to think of an array as a collection of variables of

the same type.

All arrays consist of contiguous memory locations. The lowest address corresponds to the first element

and the highest address to the last element.

Numbers(1) Numbers(2) Numbers(3) Numbers(4) …

Arrays can be one- dimensional (like vectors), two-dimensional (like matrices) and Fortran allows you

to create up to 7-dimensional arrays.

7.2 Declaring Array of Fixed Size

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 177 |

Arrays are declared with the dimension attribute.

For example, to declare a one-dimensional array named number, of real numbers containing 5 elements,

you write,

Data type, dimention(lower-limit : upper-limit) :: arrayname

real, dimension(5) :: numbers

The individual elements of arrays are referenced by specifying their subscripts. The first element of an

array has a subscript of one. The array numbers contains five real variables –numbers(1), numbers(2),

numbers(3), numbers(4), and numbers(5).

To create a 5 x 5 two-dimensional array of integers named matrix, you write –

integer, dimension (5,5) :: matrix

You can also declare an array with some explicit lower bound, for example –

real, dimension(2:6) :: numbers

integer, dimension (-3:2,0:4) :: matrix

7.3 Assigning values along with Declaration

You can either assign values to individual members, like,

numbers(1) = 2.0

or, you can use a loop,

do i =1,5

 numbers(i) = i * 2.0

end do

1-D array

arrayname=: (/ val1,val2,……,valn /)

One-dimensional array elements can be directly assigned values using a short hand symbol, called array

constructor, like,

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 178 |

numbers = (/1.5, 3.2,4.5,0.9,7.2 /)

Note: Spaces are not allowed between the brackets ‘(‘and the back slash ‘/’

Example

The following example demonstrates the concepts discussed above.

program arrayProg

real :: numbers(5) !one dimensional integer array

integer :: matrix(3,3), i , j !two dimensional real array

!assigning some values to the array numbers

 do i=1,5

 numbers(i) = i * 2.0

 end do

!display the values

 do i = 1, 5

 Print *, numbers(i)

 end do

!assigning some values to the array matrix

 do i=1,3

 do j = 1, 3

matrix(i, j) = i+j

 end do

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 179 |

 end do

!display the values

 do i=1,3

 do j = 1, 3

 Print *, matrix(i,j)

 end do

 end do

!short hand assignment

 numbers = (/1.5, 3.2,4.5,0.9,7.2 /)

!display the values

 do i = 1, 5

 Print *, numbers(i)

 end do

end program arrayProg

When the above code is compiled and executed, it produces the following result −

 2.00000000

 4.00000000

 6.00000000

 8.00000000

 10.0000000

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 180 |

 2

 3

 4

 3

 4

 5

 4

 5

 6

 1.50000000

 3.20000005

 4.50000000

0.899999976

 7.19999981

Some Array Related Terms

The following table gives some array related terms –

Term Meaning

Rank It is the number of dimensions an array has. For example, for the

array named matrix, rank is 2, and for the array named numbers,

rank is 1.

Extent It is the number of elements along a dimension. For example, the

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 181 |

array numbers has extent 5 and the array named matrix has

extent 3 in both dimensions.

Shape The shape of an array is a one-dimensional integer array,

containing the number of elements (the extent) in each

dimension. For example, for the array matrix, shape is (3, 3) and

the array numbers it is (5).

Size It is the number of elements an array contains. For the array

matrix, it is 9, and for the array numbers, it is 5.

7.4 Procedure

A procedure is a group of statements that perform a well-defined task and can be invoked from your

program. Information (or data) is passed to the calling program, to the procedure as arguments.

7.4.1 Passing Arrays to Procedures

You can pass an array to a procedure as an argument. The following example demonstrates the concept

−

program arrayToProcedure

implicit none

 integer, dimension (5) :: myArray

integer :: i

 call fillArray (myArray)

 call printArray(myArray)

end program arrayToProcedure

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 182 |

subroutine fillArray (a)

implicit none

 integer, dimension (5), intent (out) :: a

 ! local variables

integer :: i

 do i = 1, 5

 a(i) = i

 end do

end subroutine fillArray

subroutine printArray(a)

 integer, dimension (5) :: a

integer::i

 do i = 1, 5

 Print *, a(i)

 end do

end subroutine printArray

When the above code is compiled and executed, it produces the following result −

1

2

3

4

5

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 183 |

In the above example, the subroutine fillArray and printArray can only be called with arrays with

dimension 5. However, to write subroutines that can be used for arrays of any size, you can rewrite it

using the following technique −

program arrayToProcedure

implicit none

 integer, dimension (10) :: myArray

integer :: i

 interface

 subroutine fillArray (a)

 integer, dimension(:), intent (out) :: a

integer :: i

 end subroutine fillArray

 subroutine printArray (a)

 integer, dimension(:) :: a

integer :: i

 end subroutine printArray

 end interface

 call fillArray (myArray)

 call printArray(myArray)

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 184 |

end program arrayToProcedure

subroutine fillArray (a)

implicit none

integer,dimension (:), intent (out) :: a

 ! local variables

integer :: i, arraySize

arraySize = size(a)

 do i = 1, arraySize

 a(i) = i

 end do

end subroutine fillArray

subroutine printArray(a)

implicit none

integer,dimension (:) :: a

integer::i, arraySize

arraySize = size(a)

 do i = 1, arraySize

 Print *, a(i)

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 185 |

 end do

end subroutine printArray

Please note that the program is using the size function to get the size of the array.

When the above code is compiled and executed, it produces the following result −

1

2

3

4

5

6

7

8

9

10

Check your Progress A

1 …………… can store a fixed-size sequential collection of elements of the same type.

2 Arrays are declared with the ………………… attribute.

3 To access an array section, you need to provide the ………………… of the section

7.5 Array Sections:

So far we have referred to the whole array, Fortran provides an easy way to refer several elements, or a

section of an array, using a single statement.

To access an array section, you need to provide the lower and the upper bound of the section, as well as

a stride (increment), for all the dimensions. This notation is called a subscript triplet:

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 186 |

array ([lower]:[upper][:stride], ...)

When no lower and upper bounds are mentioned, it defaults to the extents you declared, and stride value

defaults to 1.

The following example demonstrates the concept −

program arraySubsection

 real, dimension(10) :: a, b

integer::i, asize, bsize

a(1:7) = 5.0 ! a(1) to a(7) assigned 5.0

a(8:) = 0.0 ! rest are 0.0

b(2:10:2) = 3.9

b(1:9:2) = 2.5

!display

asize = size(a)

bsize = size(b)

 do i = 1, asize

 Print *, a(i)

 end do

 do i = 1, bsize

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 187 |

 Print *, b(i)

 end do

end program arraySubsection

When the above code is compiled and executed, it produces the following result −

5.00000000

5.00000000

5.00000000

5.00000000

5.00000000

5.00000000

5.00000000

0.00000000E+00

0.00000000E+00

0.00000000E+00

2.50000000

3.90000010

2.50000000

3.90000010

2.50000000

3.90000010

2.50000000

3.90000010

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 188 |

2.50000000

3.90000010

7.6 Variable Size Arrays:

A variable size array is an array, the size of which is not known at compile time, but will be known at

execution time.

Variable size arrays are declared with the attribute allocatable.

For example:

real, dimension (:,:), allocatable :: darray

The rank of the array, i.e., the dimensions has to be mentioned however, to allocate memory to such an

array, you use the allocate function.

allocate (darray(s1,s2))

After the array is used, in the program, the memory created should be freed using the deallocate

function

deallocate (darray)

Example

The following example demonstrates the concepts discussed above.

program dynamic_array

implicit none

!rank is 2, but size not known

 real, dimension (:,:), allocatable :: darray

integer :: s1, s2

integer :: i, j

 print*, "Enter the size of the array:"

 read*, s1, s2

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 189 |

 ! allocate memory

 allocate (darray(s1,s2))

 do i = 1, s1

 do j = 1, s2

darray(i,j) = i*j

 print*, "darray(",i,",",j,") = ", darray(i,j)

 end do

 end do

 deallocate (darray)

end program dynamic_array

When the above code is compiled and executed, it produces the following result −

Enter the size of the array: 3,4

darray(1 , 1) = 1.00000000

darray(1 , 2) = 2.00000000

darray(1 , 3) = 3.00000000

darray(1 , 4) = 4.00000000

darray(2 , 1) = 2.00000000

darray(2 , 2) = 4.00000000

darray(2 , 3) = 6.00000000

darray(2 , 4) = 8.00000000

darray(3 , 1) = 3.00000000

darray(3 , 2) = 6.00000000

darray(3 , 3) = 9.00000000

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 190 |

darray(3 , 4) = 12.0000000

7.6.1 Use of Multidimensional array:

FORTRAN 90 arrays may have up to seven dimensions. The elements in each dimension are of the

same type so it is not possible to have an array with INTEGER values in the first

dimension, REAL values in the second dimension, CHARACTER values in the third dimension, etc.

Multidimensional arrays are declared in the same way as one-dimensional arrays. The array bounds or

lengths of each dimension are separated by commas.

 INTEGER BATTLE(31,12,1939:1945)

BATTLE is a three-dimensional array.The first dimension has length 31, the second has length 12 and

the third length 7. The subscript for the first dimension range from 1 to 31, the subscripts for the second

dimension range from 1 to 12 and the subscript for the third dimension range from 1939 to 1945.

The syntax of data statement is −

data variable / list / ...

Example

The following example demonstrates the concept −

program dataStatement

implicit none

integer :: a(5), b(3,3), c(10),i, j

 data a /7,8,9,10,11/

 data b(1,:) /1,1,1/

 data b(2,:)/2,2,2/

 data b(3,:)/3,3,3/

 data (c(i),i = 1,10,2) /4,5,6,7,8/

 data (c(i),i = 2,10,2)/5*2/

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 191 |

 Print *, 'The A array:'

 do j = 1, 5

 print*, a(j)

 end do

 Print *, 'The B array:'

 do i = lbound(b,1), ubound(b,1)

write(*,*) (b(i,j), j = lbound(b,2), ubound(b,2))

 end do

 Print *, 'The C array:'

 do j = 1, 10

 print*, c(j)

 end do

end program dataStatement

When the above code is compiled and executed, it produces the following result −

 The A array:

 7

 8

 9

 10

 11

 The B array:

 1 1 1

 2 2 2

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 192 |

 3 3 3

 The C array:

 4

 2

 5

 2

 6

 2

 7

 2

 8

 2

7.6.2 Use of Where Statement:

The where statement allows you to use some elements of an array in an expression, depending on the

outcome of some logical condition. It allows the execution of the expression, on an element, if the given

condition is true.

Example

The following example demonstrates the concept −

program whereStatement

implicit none

integer :: a(3,5), i , j

 do i = 1,3

 do j = 1, 5

 a(i,j) = j-i

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 193 |

 end do

 end do

 Print *, 'The A array:'

 do i = lbound(a,1), ubound(a,1)

write(*,*) (a(i,j), j = lbound(a,2), ubound(a,2))

 end do

where(a<0)

 a = 1

 elsewhere

 a = 5

 end where

 Print *, 'The A array:'

 do i = lbound(a,1), ubound(a,1)

write(*,*) (a(i,j), j = lbound(a,2), ubound(a,2))

 end do

end program whereStatement

When the above code is compiled and executed, it produces the following result −

 The A array:

 0 1 2 3 4

 -1 0 1 2 3

 -2 -1 0 1 2

 The A array:

 5 5 5 5 5

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 194 |

 1 5 5 5 5

 1 1 5 5 5

7.7 String:

A string is a sequence of characters.

A character string may be only one character in length, or it could even be of many characters in

length. In Fortran, character constants are given between a pair of double or single quotes.

The intrinsic data type character stores characters and strings. The length of the string can be specified

by len specifier. If no length is specified, it is 1. You can refer individual characters within a string

referring by position; the left most character is at position 1.

7.8 String Declaration:

Declaring a string is same as other variables −

Data-type :: variable_name

For example,

Character(n) :: val1,val2,….,valn

Character(len=n) :: val1,val2,….,valn

Character(len = 20) :: firstname, surname

you can assign a value like,

character (len = 40) :: name

name = “Zara Ali”

The following example demonstrates declaration and use of character data type −

program hello

implicit none

character(len = 15) :: surname, firstname

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 195 |

character(len = 6) :: title

character(len = 25)::greetings

 title = 'Mr.'

firstname = 'Rowan'

 surname = 'Atkinson'

 greetings = 'A big hello from Mr. Beans'

 print *, 'Here is', title, firstname, surname

 print *, greetings

end program hello

When you compile and execute the above program it produces the following result −

Here isMr. Rowan Atkinson

A big hello from Mr. Bean

Check Your Progress B

1…………… array size is not known at compile time.

2 The Fortran language can treat characters as ……………………………...

3 Joining of two strings one after the another is called …………………

7.9 String Operations:

There are various operations applied on string are:

1) String Concatenation

2) Extracting Substring

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 196 |

3) Trimming Strings

4) Left/ Right Adjustments of String

5) Searching of Substring

7.9.1 String Concatenation:

The concatenation operator //, concatenates strings.

The following example demonstrates this −

program hello

implicit none

character(len = 15) :: surname, firstname

character(len = 6) :: title

character(len = 40):: name

character(len = 25)::greetings

 title = 'Mr.'

firstname = 'Rowan'

 surname = 'Atkinson'

 name = title//firstname//surname

 greetings = 'A big hello from Mr. Beans'

 print *, 'Here is', name

 print *, greetings

end program hello

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 197 |

When you compile and execute the above program it produces the following result −

Here is Mr. Rowan Atkinson

A big hello from Mr. Bean

7.9.2 Extracting Substrings:

In Fortran, you can extract a substring from a string by indexing the string, giving the start and the end

index of the substring in a pair of brackets. This is called extent specifier.

The following example shows how to extract the substring ‘world’ from the string ‘hello world’ −

program subString

character(len = 11)::hello

 hello = "Hello World"

 print*, hello(7:11)

end program subString

When you compile and execute the above program it produces the following result −

World

Example

The following example uses the date_and_time function to give the date and time string. We use extent

specifiers to extract the year, date, month, hour, minutes and second information separately.

program datetime

implicit none

character(len = 8) :: dateinfo ! ccyymmdd

character(len = 4) :: year, month*2, day*2

character(len = 10) :: timeinfo ! hhmmss.sss

character(len = 2) :: hour, minute, second*6

call date_and_time(dateinfo, timeinfo)

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 198 |

 ! let’s break dateinfo into year, month and day.

 ! dateinfo has a form of ccyymmdd, where cc = century, yy = year

 ! mm = month and dd = day

year =dateinfo(1:4)

 month = dateinfo(5:6)

 day = dateinfo(7:8)

 print*, 'Date String:', dateinfo

 print*, 'Year:', year

 print *,'Month:', month

 print *,'Day:', day

 ! let’s break timeinfo into hour, minute and second.

 ! timeinfo has a form of hhmmss.sss, where h = hour, m = minute

 ! and s = second

 hour = timeinfo(1:2)

 minute = timeinfo(3:4)

 second = timeinfo(5:10)

 print*, 'Time String:', timeinfo

 print*, 'Hour:', hour

 print*, 'Minute:', minute

 print*, 'Second:', second

end program datetime

When you compile and execute the above program, it gives the detailed date and time information −

Date String: 20140803

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 199 |

Year: 2014

Month: 08

Day: 03

Time String: 075835.466

Hour: 07

Minute: 58

Second: 35.466

7.9.3 Trimming Strings

The trim function takes a string, and returns the input string after removing all trailing blanks.

Example

program trimString

implicit none

 character (len = *n), parameter :: fname="Susanne", sname="Rizwan"

 character (len = 20) :: fullname

fullname = fname//" "//sname !concatenating the strings

 print*,fullname,", the beautiful dancer from the east!"

 print*,trim(fullname),", the beautiful dancer from the east!"

end program trimString

When you compile and execute the above program it produces the following result −

Susanne Rizwan , the beautiful dancer from the east!

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 200 |

 Susanne Rizwan, the beautiful dancer from the east!

7.9.4 Left and Right Adjustment of Strings:

The function adjustl takes a string and returns it by removing the leading blanks and appending them as

trailing blanks.

The function adjustr takes a string and returns it by removing the trailing blanks and appending them as

leading blanks.

Example

program hello

implicit none

character(len = 15) :: surname, firstname

character(len = 6) :: title

character(len = 40):: name

character(len = 25):: greetings

 title = 'Mr. '

firstname = 'Rowan'

 surname = 'Atkinson'

 greetings = 'A big hello from Mr. Beans'

 name = adjustl(title)//adjustl(firstname)//adjustl(surname)

 print *, 'Here is', name

 print *, greetings

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 201 |

 name = adjustr(title)//adjustr(firstname)//adjustr(surname)

 print *, 'Here is', name

 print *, greetings

 name = trim(title)//trim(firstname)//trim(surname)

 print *, 'Here is', name

 print *, greetings

end program hello

When you compile and execute the above program it produces the following result −

Here is Mr. Rowan Atkinson

A big hello from Mr. Bean

Here is Mr. Rowan Atkinson

A big hello from Mr. Bean

Here is Mr.RowanAtkinson

A big hello from Mr. Bean

7.9.5 Searching for a Substring in a String:

The index function takes two strings and checks if the second string is a substring of the first string. If

the second argument is a substring of the first argument, then it returns an integer which is the starting

index of the second string in the first string, else it returns zero.

Example

program hello

implicit none

 character(len=30) :: myString

 character(len=10) :: testString

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 202 |

myString = 'This is a test'

testString = 'test'

if(index(myString, testString) == 0)then

 print *, 'test is not found'

 else

 print *, 'test is found at index: ', index(myString, testString)

 end if

end program hello

When you compile and execute the above program it produces the following result −

test is found at index: 11

7.10 Summary:

Arrays a kind of data structure that can store a fixed-size sequential collection of elements of the same

type. An array is used to store a collection of data, but it is often more useful to think of an array as a

collection of variables of the same type. Complier does not perform any bound checking on an array.

The array variable acts as a pointer to the zeroth element of the array. Array elements are stored in

contiguous memory locations and they can be accessed using pointers. String is a collection of

characters where the last character is null. As it is an array, all the characters are stored in contiguous

memory locations. There are various operations that can be performed on the string.

7.11 KEYWORDS

Array: An array is an ordered and finite set of homogenous elements.

Dynamic Array: A dynamic array is an array, the size of which is not known at compile time, but will

be known at execution time.

String: A string is a group of characters of any length.

String Operations: There are various operations are applied on string like concatenation, trimming,

substring.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 203 |

Answer to check your Progress

Check Your Progress A

1 Arrays

2 dimension

3 lower and upper bound

Check Your Progress B

1 Dynamic

2 single character or contiguous strings.

3 String concatenation

7.12 Self Assessment Questions:

1) Why an array is called a derived data type?

2) Can an array is assigned to another of same type and size?

3) What would be contents of the following array after initialization?

int A[5]= {4,5,6};

4) Write a program to copy the contents of an array into the another in a reverse array?

5) What is String?

6) Describe the operations of string?

7.13 SUGGESTED READINGS

1. Computer Programming in Fortran 90 and 95 by V Rajaraman

2. Introduction to Programming with Fortran by Chivers, lan, Sleightholme, Jane

3. Fortran For Scientists and Engineers by Stephen J. Chapman, Mcgraw-Hill

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 204 |

Class : M.Sc. (Mathematics) Course Code : MAL 516

Subject : Programming with FORTRAN (Theory)

CHAPTER-8

FUNCTIONS AND SUBROUTINES

STRUCTURE

8.0 Objectives

8.1 Introduction

8.2 Subprogram

8.3 Advantages of Subprogram

8.4 Function

8.5 Subroutine

8.6 Specifying Arguments

8.7 Recursive Procedure

8.8 Internal Procedure

8.9 Difference between function subprogram and Subroutine subprogram

8.10 Intrinsic Function

8.11 Summary

8.12 Keywords

8.13 Self-Assessment Questions

8.14 Suggested Readings

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 205 |

8.0 OBJECTIVES

After reading this lesson, you should be able to:

1) Define the functions and how they are initialized.

2) Explain the concept of encryption and decryption.

3) Define multidimensional arrays.

4) How a string can be stored in array?

8.1 Introduction:

In fortran language procedure are program segments which have an independent existence. In other

words procedure may be developed separately and tested. They can be than used by other programs.

There are two types of procedure in FORAN 90 known as function and subroutine. There are some

inbuilt function known as intrinsic function, such as SIN and EXP Programs for evaluating such such

functions have already been written, tested and incorporated in the Fortran Processor by a professional

programmer. when we write SIN(y) we invoke such an independent fuction. Besides such predefined

function we may write to program functions which we may need frequently but which are notlibrary. In

such a case it is a good idea to write a good efficient program for this, put it in our own “private library”

and use it just like a predefined functions.

Another motivation for providing subroutines and functions in fortran is to enable a fortran user to use

programs developed by others, when it satisfies his requirements. There are several of efficient , well

tested program for common problems in matrix manipulation, algebraic equation solution, statistical

computation etc, have been developed and tested by companies.

In this chapter we will discuss the method of defining and using function and subroutines. Functions

and subroutines may be classified as:

Predefined (built-in) or Intrinsic function

External functions or Function subprograms

Generic function

Subroutine subprogram

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 206 |

Intrinsic function such as SQRT, SIN, COS, MOD etc

External functions or Function subprograms is defined by a group of statements. It is implicitly

referenced by the appearance of its name in the program.

A generic function is function which returns a value of same type as that’s of its argument.

A subroutine subprogram is also defined by an independent group of statements. It is explicitly

referenced by using a statement known as CALL in fortran.

8.2 Subprogram

When a programs is more than a few hundred lines long, it gets hard to follow. Fortran codes that solve

real engineering problems often have tens of thousands of lines. The only way to handle such big codes,

is to use a modular approach and split the program into many separate smaller units

called subprograms.

A subprogram is a (small) piece of code that solves a well defined subproblem. In a large program, one

often has to solve the same subproblems with many different data. Instead of replicating code, these

tasks should be solved by subprograms . The same subprogram can be invoked many times with

different input data.

There are two types of subprograms −

 Functions

 Subroutines

8.3 Advantages of Subprogram

There are several advantages to using subprograms:

1. They help keep the code simple, and, thus, more readable.

2. They allow the programmer to use the same code as many times as needed throughout the

program.

3. They allow the programmer to define needed functions.

4. They can be used in other programs.

8.4 Function

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 207 |

A function is a procedure that returns a single quantity. A function should not modify its arguments.

The returned quantity is known as function value, and it is denoted by the function name.

Syntax

Syntax for a function is as follows −

function name(arg1, arg2,)

 [declarations, including those for the arguments]

 [executable statements]

end function [name]

The following example demonstrates a function named area_of_circle. It calculates the area of a circle

with radius r.

program calling_func

 real :: a

 a = area_of_circle(2.0)

 Print *, "The area of a circle with radius 2.0 is"

 Print *, a

end program calling_func

! this function computes the area of a circle with radius r

function area_of_circle (r)

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 208 |

! function result

implicit none

 ! dummy arguments

 real :: area_of_circle

 ! local variables

 real :: r

 real :: pi

 pi = 4 * atan (1.0)

 area_of_circle = pi * r**2

end function area_of_circle

When you compile and execute the above program, it produces the following result –

The area of a circle with radius 2.0 is

 12.5663710

Please note that −

 You must specify implicit none in both the main program as well as the procedure.

 The argument r in the called function is called dummy argument.

The result Option

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 209 |

If you want the returned value to be stored in some other name than the function name, you can use

the result option.

You can specify the return variable name as −

function name(arg1, arg2,) result (return_var_name)

 [declarations, including those for the arguments]

 [executable statements]

end function [name]

8.5 Subroutine

 subroutine does not return a value, however it can modify its arguments.

Syntax

subroutine name(arg1, arg2,)

{declarations, including those for the arguments}

 data-type, intent(in):: var1, var2,….,varn

 data-type, intent(out):: var1,var2,….,varn

end subroutine [name]

How to Calling a Subroutine

You need to invoke a subroutine using the call statement.

The following example demonstrates the definition and use of a subroutine swap, that changes the

values of its arguments.

program calling_func

implicit none

real :: a, b

 a = 5.0

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 210 |

 b = 7.0

 Print *, "Before calling swap"

 Print *, "a = ", a

 Print *, "b = ", b

 call swap(a, b)

 Print *, "After calling swap"

 Print *, "a = ", a

 Print *, "b = ", b

end program calling_func

subroutine swap(x, y)

implicit none

real :: x, y, temp

 temp = x

 x = y

 y = temp

end subroutine swap

When you compile and execute the above program, it produces the following result −

Before calling swap

a =5.00000000

b = 7.00000000

After calling swap

a = 7.00000000

b = 5.00000000

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 211 |

8.6 Specifying the Intent of the Arguments:

The intent attribute allows you to specify the intention with which arguments are used in the procedure.

The following table provides the values of the intent attribute –

Value Used as Explanation

In intent(in) Used as input values, not changed in

the function

Out intent(out) Used as output value, they are

overwritten

inout intent(inout) Arguments are both used and

overwritten

The following example demonstrates the concept −

program calling_func

implicit none

real :: x, y, z, disc

 x = 2.0

 y = 6.0

 z = 3.0

 call intent_example(x, y, z, disc)

 Print *, "The value of the discriminant is"

 Print *, disc

end program calling_func

subroutine intent_example (a, b, c, d)

implicit none

 ! dummy arguments

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 212 |

 real, intent (in) :: a

 real, intent (in) :: b

 real, intent (in) :: c

 real, intent (out) :: d

 d = b * b - 4.0 * a * c

end subroutine intent_example

When you compile and execute the above program, it produces the following result −

The value of the discriminant is

 12.0000000

Check Your Progress A

1 ………… is a procedure that returns a single quantity.

2 Function should not modify its …………..

3 …………… does not return a value.

8.7 Recursive Procedures:

Recursion occurs when a programming languages allows you to call a function inside the same

function. It is called recursive call of the function.

When a procedure calls itself, directly or indirectly, is called a recursive procedure. You should declare

this type of procedures by preceding the word recursive before its declaration.

When a function is used recursively, the result option has to be used.

Following is an example, which calculates factorial for a given number using a recursive procedure −

program calling_func

implicit none

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 213 |

integer :: i, f

i = 15

 Print *, "The value of factorial 15 is"

 f = myfactorial(15)

 Print *, f

end program calling_func

! computes the factorial of n (n!)

recursive function myfactorial (n) result (fac)

! function result

implicit none

 ! dummy arguments

integer :: fac

 integer, intent (in) :: n

 select case (n)

 case (0:1)

fac = 1

 case default

fac = n * myfactorial (n-1)

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 214 |

 end select

end function myfactorial

8.8 Internal Procedures:

When a procedure is contained within a program, it is called the internal procedure of the program. The

syntax for containing an internal procedure is as follows −

program program_name

 implicit none

 ! type declaration statements

 ! executable statements

 . . .

 contains

 ! internal procedures

 . . .

end program program_name

The following example demonstrates the concept −

program mainprog

implicit none

real :: a, b

 a = 2.0

 b = 3.0

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 215 |

 Print *, "Before calling swap"

 Print *, "a = ", a

 Print *, "b = ", b

 call swap(a, b)

 Print *, "After calling swap"

 Print *, "a = ", a

 Print *, "b = ", b

contains

 subroutine swap(x, y)

real :: x, y, temp

 temp = x

 x = y

 y = temp

 end subroutine swap

end program mainprog

When you compile and execute the above program, it produces the following result −

Before calling swap

a = 2.00000000

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 216 |

b = 3.00000000

After calling swap

a = 3.00000000

b = 2.00000000

Check your Progress B

1 ……. occurs when a programming languages allows you to call a function inside the same function.

2 Procedure is contained within a program, it is called the ………………..

3 …………… are some common and important functions that are provided as a part of the Fortran

language

8.9 Difference between Function and Subroutine

S.No. Function Subprogram Subroutine Subprogram

1 It can return only one value to the

calling program.

It can return more than one value to the

calling program.

2 It returns value through its name. It returns value through its arguments.

3 There must be at least one argument in

the dummy list.

There is no restriction i.e it can be

without any arguments.

4 It is called by referencing by its name. It is called by CALL statement.

5 It has a type associated with its name

which identifies types value returned

by it.

It has no type associated with its name

and value returned can be of different

type arguments returning values to the

calling program.

8.10 Intrinsic Function:

Intrinsic functions are some common and important functions that are provided as a part of the Fortran

compiler supplied by main factors of compiler. We have already discussed some of these functions in

the Arrays, Characters and String chapters.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 217 |

Intrinsic functions can be categorised as −

1) Numeric Functions

2) Mathematical Functions

3) Numeric Inquiry Functions

4) Floating-Point Manipulation Functions

5) Bit Manipulation Functions

6) Character Functions

In the following section we provide brief descriptions of all these functions from other categories.

In the function name column,

1) A represents any type of numeric variable

2) R represents a real or integer variable

3) X and Y represent real variables

4) Z represents complex variable

5) W represents real or complex variable

8.10.1 Numeric Functions:

Sr.No Function & Description

The expression in [] is optional.

1 ABS (A)

It returns the absolute value of A

2 AIMAG (Z)

It returns the imaginary part of a complex number Z

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 218 |

3 AINT (A [, KIND])

It truncates fractional part of A towards zero, returning a real, whole number.

4 ANINT (A [, KIND])

It returns a real value, the nearest integer or whole number.

5 CEILING (A [, KIND])

It returns the least integer greater than or equal to number A.

6 CMPLX (X [, Y, KIND])

It converts the real variables X and Y to a complex number X+iY; if Y is absent, 0

is used.

7 CONJG (Z)

It returns the complex conjugate of any complex number Z.

8 DBLE (A)

It converts A to a double precision real number.

9 DIM (X, Y)

It returns the positive difference of X and Y.

10 DPROD (X, Y)

It returns the double precision real product of X and Y.

11 FLOOR (A [, KIND])

It provides the greatest integer less than or equal to number A.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 219 |

12 INT (A [, KIND])

It converts a number (real or integer) to integer, truncating the real part towards

zero.

13 MAX (A1, A2 [, A3,...])

It returns the maximum value from the arguments, all being of same type.

14 MIN (A1, A2 [, A3,...])

It returns the minimum value from the arguments, all being of same type.

15 MOD (A, P)

It returns the remainder of A on division by P, both arguments being of the same

type (A-INT(A/P)*P)

16 MODULO (A, P)

It returns A modulo P: (A-FLOOR(A/P)*P)

17 NINT (A [, KIND])

It returns the nearest integer of number A

18 REAL (A [, KIND])

It Converts to real type

19 SIGN (A, B)

It returns the absolute value of A multiplied by the sign of P. Basically it transfers

the of sign of B to A.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 220 |

Example

program numericFunctions

implicit none

 ! define constants

 ! define variables

real :: a, b

complex :: z

 ! values for a, b

 a = 15.2345

 b = -20.7689

write(*,*) 'abs(a): ',abs(a),' abs(b): ',abs(b)

write(*,*) 'aint(a): ',aint(a),' aint(b): ',aint(b)

write(*,*) 'ceiling(a): ',ceiling(a),' ceiling(b): ',ceiling(b)

write(*,*) 'floor(a): ',floor(a),' floor(b): ',floor(b)

 z = cmplx(a, b)

write(*,*) 'z: ',z

end program numericFunctions

When you compile and execute the above program, it produces the following result −

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 221 |

abs(a): 15.2344999 abs(b): 20.7688999

aint(a): 15.0000000 aint(b): -20.0000000

ceiling(a): 16 ceiling(b): -20

floor(a): 15 floor(b): -21

z: (15.2344999, -20.7688999)

8.10.2 Mathematical Functions:

Sr.No Function & Description

1 ACOS (X)

It returns the inverse cosine in the range (0, π), in radians.

2 ASIN (X)

It returns the inverse sine in the range (-π/2, π/2), in radians.

3 ATAN (X)

It returns the inverse tangent in the range (-π/2, π/2), in radians.

4 ATAN2 (Y, X)

It returns the inverse tangent in the range (-π, π), in radians.

5 COS (X)

It returns the cosine of argument in radians.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 222 |

6 COSH (X)

It returns the hyperbolic cosine of argument in radians.

7 EXP (X)

It returns the exponential value of X.

8 LOG (X)

It returns the natural logarithmic value of X.

9 LOG10 (X)

It returns the common logarithmic (base 10) value of X.

10 SIN (X)

It returns the sine of argument in radians.

11 SINH (X)

It returns the hyperbolic sine of argument in radians.

12 SQRT (X)

It returns square root of X.

13 TAN (X)

It returns the tangent of argument in radians.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 223 |

14 TANH (X)

It returns the hyperbolic tangent of argument in radians.

Example

The following program computes the horizontal and vertical position x and y respectively of a projectile

after a time, t −

Where, x = u t cos a and y = u t sin a - g t2 / 2

program projectileMotion

implicit none

 ! define constants

 real, parameter :: g = 9.8

 real, parameter :: pi = 3.1415927

!define variables

real :: a, t, u, x, y

!values for a, t, and u

 a = 45.0

 t = 20.0

 u = 10.0

 ! convert angle to radians

 a = a * pi / 180.0

 x = u * cos(a) * t

 y = u * sin(a) * t - 0.5 * g * t * t

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 224 |

write(*,*) 'x: ',x,' y: ',y

end program projectileMotion

When you compile and execute the above program, it produces the following result −

x: 141.421356 y: -1818.57861

8.10.3 Numeric Inquiry Functions:

These functions work with a certain model of integer and floating-point arithmetic. The functions return

properties of numbers of the same kind as the variable X, which can be real and in some cases integer.

Sr.No Function & Description

1 DIGITS (X)

It returns the number of significant digits of the model.

2 EPSILON (X)

It returns the number that is almost negligible compared to one. In other words, it

returns the smallest value such that REAL(1.0, KIND(X)) + EPSILON(X) is not

equal to REAL(1.0, KIND(X)).

3 HUGE (X)

It returns the largest number of the model

4 MAXEXPONENT (X)

It returns the maximum exponent of the model

5 MINEXPONENT (X)

It returns the minimum exponent of the model

6 PRECISION (X)

It returns the decimal precision

7 RADIX (X)

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 225 |

It returns the base of the model

8 RANGE (X)

It returns the decimal exponent range

9 TINY (X)

It returns the smallest positive number of the model

8.10.4 Floating-Point Manipulation Functions:

Sr.No Function & Description

1 EXPONENT (X)

It returns the exponent part of a model number

2 FRACTION (X)

It returns the fractional part of a number

3 NEAREST (X, S)

It returns the nearest different processor number in given direction

4 RRSPACING (X)

It returns the reciprocal of the relative spacing of model numbers near given

number

5 SCALE (X, I)

It multiplies a real by its base to an integer power

6 SET_EXPONENT (X, I)

it returns the exponent part of a number

7 SPACING (X)

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 226 |

It returns the absolute spacing of model numbers near given number

8.10.5 Bit Manipulation Functions:

Sr.No Function & Description

1 BIT_SIZE (I)

It returns the number of bits of the model

2 BTEST (I, POS)

Bit testing

3 IAND (I, J)

Logical AND

4 IBCLR (I, POS)

Clear bit

5 IBITS (I, POS, LEN)

Bit extraction

6 IBSET (I, POS)

Set bit

7 IEOR (I, J)

Exclusive OR

8 IOR (I, J)

Inclusive OR

9 ISHFT (I, SHIFT)

Logical shift

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 227 |

10 ISHFTC (I, SHIFT [, SIZE])

Circular shift

11 NOT (I)

Logical complement

8.10.6 Character Functions:

Sr.No Function & Description

1 ACHAR (I)

It returns the I character in the ASCII collating sequence.

2 ADJUSTL (STRING)

It adjusts string left by removing any leading blanks and inserting trailing

blanks

3 ADJUSTR (STRING)

It adjusts string right by removing trailing blanks and inserting leading blanks.

4 CHAR (I [, KIND])

It returns the I character in the machine specific collating sequence

5 IACHAR (C)

It returns the position of the character in the ASCII collating sequence.

6 ICHAR (C)

It returns the position of the character in the machine (processor) specific

collating sequence.

7 INDEX (STRING, SUBSTRING [, BACK])

It returns the leftmost (rightmost if BACK is .TRUE.) starting position of

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 228 |

SUBSTRING within STRING.

8 LEN (STRING)

It returns the length of a string.

9 LEN_TRIM (STRING)

It returns the length of a string without trailing blank characters.

10 LGE (STRING_A, STRING_B)

Lexically greater than or equal

11 LGT (STRING_A, STRING_B)

Lexically greater than

12 LLE (STRING_A, STRING_B)

Lexically less than or equal

13 LLT (STRING_A, STRING_B)

Lexically less than

14 REPEAT (STRING, NCOPIES)

Repeated concatenation

15 SCAN (STRING, SET [, BACK])

It returns the index of the leftmost (rightmost if BACK is .TRUE.) character of

STRING that belong to SET, or 0 if none belong.

16 TRIM (STRING)

Removes trailing blank characters

17 VERIFY (STRING, SET [, BACK])

Verifies the set of characters in a string

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 229 |

8.11 Summary

A function is a block of statements that performs a specific task. Functions are used to improve the

readability and reusability of the code, same function can be used in any program rather than writing the

same code from scratch, debugging of the code would be easier if you use functions, as errors are easy

to be traced and reduces the size of the code, duplicate set of statements are replaced by function calls.

8.12 KEYWORDS

Function: A function is a subprogram that can be defined by the user in his/her program.

Scope: The range of code in a program over which a variable has a meaning is called as scope of the

variable.

Subroutine: Subroutine does not return a value however it can modify its argument.

Recursive Procedure: Recursion occur when a programming language allow you to call a function

inside the same function is called Recursion.

Internal Procedure: A procedure is contained within a program is called internal procedure.

Answer to check your progress

Check Your Progress A

1 Function

2 argument

3 Subroutine

Check Your Progress B

1 Recursion

2 Internal Procedure

3 Intrinsic Function

8.13 SELF ASSESSENT QUESTION:

1) Explain in brief function.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 230 |

2) What is meant by recursion?

3) Explain in brief the intrinsic functions.

4) What is meant by subroutine?

8.14 SUGGESTED READINGS

1. Computer Programming in Fortran 90 and 95 by V Rajaraman

2. Introduction to Programming with Fortran by Chivers, lan, Sleightholme, Jane

3. Fortran For Scientists and Engineers by Stephen J. Chapman, Mcgraw-Hill

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 231 |

Class : M.Sc. (Mathematics) Course Code : MAL 516

Subject : Programming with FORTRAN (Theory)

CHAPTER-9

DERIVED TYPE AND POINTERS

STRUCTURE

9.0 Objectives

9.1 Introduction

9.2 Definition of Derived Data Type

9.3 Pointers & Targets

 9.3.1 Pointer Assignment Statement

 9.3.2 Pointer Association Status

9.4 Pointers in Assignment Statement

9.5 Pointers with Arrays

9.6 Dynamic Memory Allocation with Pointers

9.7 Pointers as Component of Derived Data Types

9.8 Arrays of Pointers

9.9 Pointers in Procedures

 9.9.1 Using ITENT Attribute

 9.9.2 Pointer Valued Function

9.10 Procedure Pointers

9.11 Summary

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 232 |

9.12 Keywords

9.13 Self-Assessment Questions

9.14 Suggested Readings

9.0 Objective:

After reading this lesson, you should be able to:

1. Understand how to declare a pointer variable.

2. Understand how to allocate memory to the pointers.

3. Understand dynamic memory allocation of pointers.

4. Understand the concept of derived data type using pointers.

9.1 Introduction

In earlier chapters, we have created and used variables of the five intrinsic Fortran data types and of

derived data types. These variables all had two characteristics in common: They all stored some form of

data, and they were almost all static, meaning that the number and types of variables in a program were

declared before program execution, and remained local the same throughout program execution. Fortran

includes another type of variable that contains no data at all. Instead, it contains the address in memory

of another variable where the data is actually stored. Because this type of variable points to another

variable, it is called a pointer. The difference between a pointer and an ordinary variable is illustrated.

 P1 var1

 (a) (b)

 Figure 9.1 show pointer variable and data variable

The difference between a pointer and an ordinary variable: (a) A pointer stores the address of

an ordinary variable in its memory location. (b) An ordinary variable stores a data value. Both pointers

and ordinary variables have names, but pointers store the addresses of ordinary variables, while

Address of

variable
Data value

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 233 |

ordinary variables store data values. Pointers are primarily used in situations where variables and arrays

must be created and destroyed dynamically during the execution of a program, and where it is not

known before the program executes just how many of any given type of variable will be needed during

a run. For example, suppose that a mailing list program must read in an unknown number of names and

addresses, sort them into a user-specified order, and then print mailing labels in that order. The names

and addresses will be stored in variables of a derived data type. If this program is implemented with

static arrays, then the arrays must be as large as the largest possible mailing list ever to be processed.

Most of the time the mailing lists will be much smaller, and this will produce a terrible waste of

computer memory. If the program is implemented with allocatable arrays, then we can allocate just the

required amount of memory, but we must still know in advance how many addresses there will be

before the first one is read. By contrast, we will now learn how to dynamically allocate a variable for

each address as it is read in, and how to use pointers to manipulate those addresses in any desired

fashion. This flexibility will produce a much more efficient program.

We will first learn the basics of creating and using pointers, and then see several examples of how they

can be used to write flexible and powerful programs.

9.2 DEFINITION OF DERIVED DATA TYPE

Fortran allows you to define derived data types. A derived data type is also called a structure, and it can

consist of data objects of different types.

Derived data types are used to represent a record. E.g. you want to keep track of your books in a library,

you might want to track the following attributes about each book −

 Title

 Author

 Subject

 Book ID

Derived data type

To define a derived data type, the type and end type statements are used. . The type statement defines a

new data type, with more than one member for your program. The format of the type statement is this −

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 234 |

type type-name

 declaration

end type

Here is the way to declare a book structure

type Books

 character(len = 50) :: title

 character(len = 50) :: author

 character(len = 150) :: subject

 integer :: book_id

end type Books

Derived data types & Elements

Elements of derived types are accessed with the "%" operator.

A structure of type Books can be created in a type declaration statement like −

type(Books) :: book1

The components of the structure can be accessed using the component selector character (%) −

book1%title = "C Programming"

book1%author = "Nuha Ali"

book1%subject = "C Programming Tutorial"

book1%book_id = 6495407

Note that there are no spaces before and after the % symbol.

Derived data type & Array

We can also create arrays of a derived type −

type(Books), dimension(2) :: list

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 235 |

Individual elements of the array could be accessed as −

list(1)%title = "C Programming"

list(1)%author = "Nuha Ali"

list(1)%subject = "C Programming Tutorial"

list(1)%book_id = 6495407

9.3 POINTERS AND TARGETS

A Fortran variable is declared to be a pointer by either including the POINTER attribute in its type

definition statement (the preferred choice) or by listing it in a separate POINTER statement. For

example, each of the following statements declares a pointerp1 that must point to a real variable.

REAL, POINTER :: p1

or

REAL :: p1

POINTER :: p1

Note that the type of a pointer must be declared, even though the pointer does not contain any data of

that type. Instead, it contains the address of a variable of the declared type. A pointer is only allowed to

point to variables of its declared type. Any attempt to point to a variable of a different type will produce

a compilation error.

Pointers to variables of derived data types may also be declared. For example,

TYPE (vector), POINTER :: vector_pointer

declares a pointer to a variable of derived data type vector. Pointers may also point to an array. A

pointer to an array is declared with a deferred-shape array specification, meaning that the rank of the

array is specified, but the actual extent of the array in each dimension is indicated by colons. Two

pointers to arrays are:

INTEGER, DIMENSION(:), POINTER :: ptr1

REAL, DIMENSION(:,:), POINTER :: ptr2

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 236 |

The first pointer can point to any 1D integer array, while the second pointer can point to any 2D real

array. A pointer can point to any variable or array of the pointer’s type as long as the variable or array

has been declared to be a target. A target is a data object whose address has been made available for use

with pointers. A Fortran variable or array is declared to be a target by either including the TARGET

attribute in its type definition statement (the preferred choice) or by listing it in a separate TARGET

statement. For example, each of the following sets of statements declares two targets to which pointers

may point.

REAL, TARGET :: a1 = 7

INTEGER, DIMENSION(10), TARGET :: int_array

or

REAL :: a1 = 7

INTEGER, DIMENSION(10) :: int_array

TARGET :: a1, int_array

They declare a real scalar value a1 and a rank 1 integer array int_array. Variable a1may be pointed to by

any real scalar pointer (such as the pointer p1 declared above),and int_array may be pointed to by any

integer rank 1 pointer (such as pointer ptr1above).

9.3.1 Pointer Assignment Statements

A pointer can be associated with a given target by means of a pointer assignment statement. A pointer

assignment statement takes the form

pointer => target

where pointer is the name of a pointer, and target is the name of a variable or array of the same type as

the pointer. The pointer assignment operator consists of an equal sign followed by a greater than sign

with no space in between.2

 When this statement is executed, the memory address of the target is stored in the pointer. After the

pointer assignment statement, any reference to the pointer will actually be a reference to the data stored

in the target.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 237 |

If a pointer is already associated with a target, and another pointer assignment statement is executed

using the same pointer, then the association with the first target is lost and the pointer now points to the

second target. Any reference to the pointer after the second pointer assignment statement will actually

be a reference to the data stored in the second target.

For example, the program defines a real pointer p and two target variables t1 and t2. The pointer is first

associated with variable t1 by a pointer assignment statement, and p is written out by a WRITE

statement. Then the pointer is associated with variable t2 by another pointer assignment statement, and

p is written out by a second WRITE statement.

Example:

Program to illustrate pointer assignment statements.

PROGRAM test_ptr

IMPLICIT NONE

REAL, POINTER :: p

REAL, TARGET :: t1 = 10., t2 = -17.

p => t1

WRITE (*,*) 'p, t1, t2 = ', p, t1, t2

p => t2

WRITE (*,*) 'p, t1, t2 = ', p, t1, t2

END PROGRAM test_ptr

When this program is executed, the results are:

C:\book\fortran>test_ptr

p, t1, t2 = 10.000000 10.000000 -17.000000

p, t1, t2 = -17.000000 10.000000 -17.000000

It is important to note that p never contains either 10. or −17. Instead, it contains the addresses of the

variables in which those values were stored, and the Fortran compiler treats a reference to the pointer as

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 238 |

a reference to those addresses. Also, note that value could be accessed either through a pointer to a

variable or through the variable’s name, and the two forms of access can be mixed even within a single

statement. It is also possible to assign the value of one pointer to another pointer in a pointer assignment

statement.

pointer1 => pointer2

After such a statement, both pointers point directly and independently to the same target. If either

pointer is changed in a later assignment, the other one will be unaffected and will continue to point to

the original target. If pointer2 is disassociated (does not point to a target) at the time the statement is

executed, then pointer1 also becomes disassociated. For example, the program defines two real pointers

p1 andp2, and two target variables t1 and t2. The pointer p1 is first associated with variablet1 by a

pointer assignment statement, and then pointer p2 is assigned the value of pointer p1 by another pointer

assignment statement. After these statements, both pointers p1 and p2 are independently associated with

variable t1. When pointer p1 is later associated with variable t2, pointer p2 remains associated with t1.

 Pointers Variables

 T1

 T2

 (a)

 Pointers Variables

 T1

 (b)

 T2

 Figure 9.2 variable points to its address

The relationship between the pointer and the variables in program test_ptr. (a) The situation

Address

of t1

10.

-17.

Address

of t2

10.

-17.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 239 |

after the first executable statement: p contains the address of variable t1, and a reference to p is the same

as a reference to t1. (b) The situation after the third executable statement: p contains

the address of variable t2, and a reference to p is the same as a reference to t2.

9.3.2 Pointer Association Status

The association status of a pointer indicates whether or not the pointer currently points to a valid target.

There are three possible statuses: undefined, associated, and disassociated. When a pointer is first

declared in a type declaration statement, its pointer association status is undefined. Once a pointer has

been associated with a target by a pointer assignment statement, its association status becomes

associated. If a pointer is later disassociated from its target and is not associated with any new target,

then its association status becomes disassociated. How can a pointer be disassociated from its target? It

can be disassociated from one target and simultaneously associated with another target by executing a

pointer assignment statement. In addition, a pointer can be disassociated from all targets by executing a

NULLIFY statement. A NULLIFY statement has the form

NULLIFY (ptr1 [,ptr2, ...])

where ptr1, ptr2, etc., are pointers. After the statement is executed, the pointers listed in the statement

are disassociated from all targets. A pointer can only be used to reference a target when it is associated

with that target. Any attempt to use a pointer when it is not associated with a target will result in an

error, and the program containing the error will abort. Therefore, we must be able to tell whether or not

a particular pointer is associated with a particular target, or with any target at all. This can be done using

the logical intrinsic function ASSOCIATED. The function comes in two forms, one containing a pointer

as its only argument and one containing both a pointer and a target. The first form is

status = ASSOCIATED (pointer)

This function returns a true value if the pointer is associated with any target, and a false value if it is not

associated with any target. The second form is

status = ASSOCIATED (pointer, target)

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 240 |

This function returns a true value if the pointer is associated with the particular target included in the

function, and a false value otherwise. A pointer’s association status can only be undefined from the time

that it is

declared until it is first used. Thereafter, the pointer’s status will always be either associated or

disassociated. Because the undefined status is ambiguous, it is recommended that every pointer’s status

be clarified as soon as it is created by either assigning it to a target or nullifying it. For example,

pointers could be declared and nullified in a program as follows:

REAL, POINTER :: p1, p2

INTEGER, POINTER :: i1

...

(additional specification statements)

...

NULLIFY (p1, p2, i1)

Fortran also provides an intrinsic function NULL() that can be used to nullify a pointer at the time it is

declared (or at any time during the execution of a program).Thus, pointers can be declared and nullified

as follows:

REAL, POINTER :: p1 => NULL(), p2 => NULL()

INTEGER, POINTER :: i1 => NULL()

...

(additional specification statements)

9.4 POINTERS IN ASSIGNMENT STATEMENTS

Whenever a pointer appears in a Fortran expression where a value is expected, the value of the target

pointed to is used instead of the pointer itself. This process is known as dereferencing the pointer. We

have already seen an example of dereferencing in the previous section: Whenever a pointer appeared in

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 241 |

a WRITE statement, the value of the target pointed to was printed out instead. As another example,

consider two pointers

p1 and p2 that are associated with variables a and b, respectively. In the ordinary assignment statement

p2 = p1

both p1 and p2 appear in places where variables are expected, so they are dereferenced, and this

statement is exactly identical to the statement

b = a

By contrast, in the pointer assignment statement

p2 => p1

p2 appears in a place where a pointer is expected, while p1 appears in a place where a target (an

ordinary variable) is expected. As a result, p1 is dereferenced, while p2 refers to the pointer itself. The

result is that the target pointed to by p1 is assigned to the pointer p2.

The program provides another example of using pointers in place of variables:

9.5 POINTERS WITH ARRAYS

A pointer can point to an array as well as a scalar. A pointer to an array must declare the type and the

rank of the array that it will point to, but does not declare the extent in each dimension. Thus, the

following statements are legal:

REAL, DIMENSION(100,1000), TARGET :: mydata

REAL, DIMENSION(:,:), POINTER :: pointer

pointer => array

A pointer can point not only to an array but also to a subset of an array (an array section). Any array

section that can be defined by a subscript triplet can be used as the target of a pointer. For example, the

program declares a 16-elementinteger array info, and fills the array with the values 1 through 16. This

array serves as the target for a series of pointers. The first pointer ptr1 points to the entire array,

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 242 |

while the second one points to the array section defined by the subscript triplet ptr1(2::2). This will

consist of the even subscripts 2, 4, 6, 8, 10, 12, 14, and 16 from the original array. The third pointer also

uses the subscript triplet 2::2, and it points the even elements from the list pointed to by second pointer.

This will consist of the subscripts 4, 8, 12, and 16 from the original array. This process of selection

continues with the remaining pointers.

Example

Program to illustrate invalid pointer assignments to array sections defined with vector

subscripts.

PROGRAM bad

IMPLICIT NONE

INTEGER :: i

INTEGER, DIMENSION(3) :: subs = [1, 8, 11]

INTEGER, DIMENSION(16), TARGET :: info = [(i, i=1,16)]

INTEGER, DIMENSION(:), POINTER :: ptr1

ptr1 => info(subs)

WRITE (*,'(A,16I3)') ' ptr1 = ', ptr1

END PROGRAM bad

Check your Progress A

1 ……….. contains more information about a particular object, like type, rank, extents, and memory

address.

2 Pointer is a …………. that has more functionalities than just storing the memory address.

3 …………….. statement allows you to allocate space for a pointer object.

9.6 DYNAMIC MEMORY ALLOCATION WITH POINTERS

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 243 |

One of the most powerful features of pointers is that they can be used to dynamically create variables or

arrays whenever required, and then to release the space used by the dynamic variables or arrays once

they are no longer needed. The procedure for doing this is similar to that used to create allocatable

arrays. Memory is allocated using an ALLOCATE statement, and it is deallocated using a

DEALLOCATE statement. The ALLOCATE statement has the same form as the ALLOCATE

statement for an allocatable array. The statement takes the form

ALLOCATE (pointer(size),[...,] STAT=status)

where pointer is the name of a pointer to the variable or array being created, size is the dimension

specification if the object being created is an array, and status is the result of the operation. If the

allocation is successful, then the status will be 0. If it fails, a processor-dependent positive integer will

be returned in the status variable. The STAT= clause is optional but should always be used, since a

failed allocation statement without a STAT= clause will cause a program to abort. This statement

creates an unnamed data object of the specified size and the pointer’s type, and sets the pointer to point

to the object. Because the new data object is unnamed, it can only be accessed by using the pointer.

After the statement is executed, the association status of the pointer will become associated. If the

pointer was associated with another data object before the ALLOCATE statement is executed, then that

association is lost. The data object created by using the pointer ALLOCATE statement is unnamed, and

so can only be accessed by the pointer. If all pointers to that memory are either nullified or reassociated

with other targets, then the data object will no longer be accessible by the program. The object will still

be present in memory, but it will no longer be possible to use it. Thus, careless programming with

pointers can result in memory being filled with unusable space. This unusable memory is commonly

referred to as a “memory leak”. One symptom of this problem is that a program seems to grow larger

and larger as it continues to execute, until it either fills the entire computer or uses all available

memory. An example of a program with a memory leak. In this program,10-element arrays are allocated

using both ptr1 and ptr2. The two arrays are initialized to different values, and those values are printed

out. Then ptr2 is assigned to point to the same memory as ptr1 in a pointer assignment statement. After

that statement, the memory that was assigned to ptr2 is no longer accessible to the program. That

memory has been “lost”, and will not be recovered until the program stops executing.

Example

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 244 |

Program to illustrate “memory leaks” in a program.

PROGRAM mem_leak

IMPLICIT NONE

INTEGER :: i, istat

INTEGER, DIMENSION(:), POINTER :: ptr1, ptr2

(concluded)

! Check associated status of ptrs.

WRITE (*,'(A,2L5)') ' Are ptr1, ptr2 associated? ', &

ASSOCIATED(ptr1), ASSOCIATED(ptr2)

! Allocate and initialize memory

ALLOCATE (ptr1(1:10), STAT=istat)

ALLOCATE (ptr2(1:10), STAT=istat)

ptr1 = [(i, i = 1,10)]

ptr2 = [(i, i = 11,20)]

! Check associated status of ptrs.

WRITE (*,'(A,2L5)') ' Are ptr1, ptr2 associated? ', &

ASSOCIATED(ptr1), ASSOCIATED(ptr2)

WRITE (*,'(A,10I3)') ' ptr1 = ', ptr1 ! Write out data

WRITE (*,'(A,10I3)') ' ptr2 = ', ptr2

ptr2 => ptr1 ! Reassign ptr2

WRITE (*,'(A,10I3)') ' ptr1 = ', ptr1 ! Write out data

WRITE (*,'(A,10I3)') ' ptr2 = ', ptr2

NULLIFY(ptr1) ! Nullify pointer

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 245 |

DEALLOCATE(ptr2, STAT=istat) ! Deallocate memory

END PROGRAM mem_leak

When program mem_leak executes, the results are:

C:\book\fortran>mem_leak

Are ptr1, ptr2 associated? F F

Are ptr1, ptr2 associated? T T

ptr1 = 1 2 3 4 5 6 7 8 9 10

ptr2 = 11 12 13 14 15 16 17 18 19 20

ptr1 = 1 2 3 4 5 6 7 8 9 10

ptr2 = 1 2 3 4 5 6 7 8 9 10

Memory that has been allocated with an ALLOCATE statement should be deallocated with a

DEALLOCATE statement when the program is finished using it. If it is not deallocated, then that

memory will be unavailable for any other use until the program finishes executing. When memory is

deallocated in a pointer DEALLOCATE statement, the pointer to that memory is nullified at the same

time. Thus, the statement

DEALLOCATE(ptr2, STAT=istat)

both deallocates the memory pointed to and nullifies the pointer ptr2. The pointer DEALLOCATE

statement can only deallocate memory that was created by an ALLOCATE statement. It is important to

remember this fact. If the pointer in the statement happens to point to a target that was not created with

an ALLOCATE statement, then the DEALLOCATE statement will fail and the program will abort

unless the STAT= clause was specified. The association between such pointers and their targets can be

broken by the use of the NULLIFY statement.

A potentially serious problem can occur when deallocating memory. Suppose that two pointers ptr1 and

ptr2 both point to the same allocated array. If pointer ptr1 is used in a DEALLOCATE statement to

deallocate the array, then that pointer is nullified. However, ptr2 will not be nullified. It will continue to

point to the memory location where the array used to be, even if that memory location is reused for

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 246 |

some other purpose by the program. If that pointer is used to either read data from or write data to the

memory location, it will be either reading unpredictable values or overwriting memory

used for some other purpose. In either case, using that pointer is a recipe for disaster! If a piece of

allocated memory is deallocated, then all of the pointers to that memory should be nullified or

reassigned. One of them will be automatically nullified by the DEALLOCATE statement, and any

others should be nullified in NULLIFY statement(s).

9.7 POINTERS AS COMPONENTS OF DERIVED DATA TYPES

Pointers may appear as components of derived data types. Pointers in derived data types may even point

to the derived data type being defined. This feature is very useful, since it permits us to construct

various types of dynamic data structures linked together by successive pointers during the execution of

a program. The simplest such structure is a linked list, which is a list of values linked together in a

linear fashion by

pointers. For example, the following derived data type contains a real number and a pointer to another

variable of the same type:

TYPE :: real_value

REAL :: value

 TYPE (real_value), POINTER :: p

END TYPE

A linked list is a series of variables of a derived data type, with the pointer from each variable pointing

to the next variable in the list. The pointer in the last variable is nullified, since there is no variable after

it in the list. Two pointers (say, head and tail) are also defined to point to the first and last variables in

the list. Recall that a static array must be declared with a fixed size when a program is compiled. As a

result, we must size each such array to be large enough to handle the largest problem that a program

will ever be required to solve. This large memory requirement can result in a program being too large to

run on some computers, and also results in a waste of memory most of the time that the program is

executed. Even allocatable arrays don’t completely solve the problem. Allocatable arrays prevent

memory waste by allowing us to allocate only the amount of memory needed for a specific problem, but

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 247 |

we must know before we allocate the memory just how many values will be present during a particular

run. In contrast, linked lists permit us to add elements one at a time, and we do not have to know in

advance how many elements will ultimately be in the list.

When a program containing a linked list first starts to execute, there are no values in the list. In that

case, the head and tail pointers have nothing to point to, so they are both nullified. When the first value

is read, a variable of the derived data type is created, and the value is stored in that variable.

9.8 ARRAYS OF POINTERS

It is not possible to declare an array of pointers in Fortran. In a pointer declaration, the DIMENSION

attribute refers to the dimension of the pointer’s target, not to the dimension of the pointer itself. The

dimension must be declared with a deferred-shape specification, and the actual size will be the size of

the target with which the pointer is associated. In the example shown below, the subscript on the pointer

refers the corresponding position in the target array, so the value of ptr(4) is 6.

REAL, DIMENSION(:), POINTER :: ptr

REAL, DIMENSION(5), TARGET :: tgt = { -2, 5., 0., 6., 1 }

ptr =>tgt

WRITE (*,*) ptr(4)

There are many applications in which arrays of pointers are useful. Fortunately, we can create an array

of pointers for those applications by using derived data types. It is illegal to have an array of pointers in

Fortran, but it is perfectly legal to have an array of any derived data type. Therefore, we can declare a

derived data type containing only a pointer, and then create an array of that data type! For example, the

program in declares an array of a derived data type containing real pointers, each of which points to a

real array.

EXAMPLE

Program illustrating how to create an array of pointers using a derived data type.

PROGRAM ptr_array

IMPLICIT NONE

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 248 |

TYPE :: ptr

 REAL, DIMENSION(:), POINTER :: p

END TYPE

TYPE (ptr), DIMENSION(3) :: p1

REAL, DIMENSION(4), TARGET :: a = [1., 2., 3., 4.]

REAL, DIMENSION(4), TARGET :: b = [5., 6., 7., 8.]

REAL, DIMENSION(4), TARGET :: c = [9., 10., 11., 12.]

p1(1)%p => a

p1(2)%p => b

p1(3)%p => c

WRITE (*,*) p1(3)%p

WRITE (*,*) p1(2)%p(3)

END PROGRAM ptr_array

With the declarations in program ptr_array, the expression p1(3)%p refers to the third array (array c), so

the first WRITE statement should print out 9., 10., 11., and 12. The expression p1(2)%p(3) refers to the

third value of the second array (array b), so

the second WRITE statement prints out the value 7. When this program is compiled and executed with

the Compaq Visual Fortran compiler, the results are:

C:\book\fortran>ptr_array

 9.000000 10.000000 11.000000 12.000000

 7.000000

 (concluded)

ptr1 = 0

ptr1(3) = 17

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 249 |

ptr2 => ptr1

DEALLOCATE (ptr1)

WRITE (*,*) ptr2

12. TYPE mytype

 INTEGER, DIMENSION(:), POINTER :: array

END TYPE

TYPE (mytype), DIMENSION(10) :: p

INTEGER :: i, istat

DO i = 1, 10

 ALLOCATE (p(i).array(10), STAT=istat)

 DO j = 1, 10

 p(i)%array(j) = 10*(i-1) + j

 END DO

END DO

WRITE (*,'(10I4)') p(4).array

WRITE (*,'(10I4)') p(7).array(1)

9.9 USING POINTERS IN PROCEDURES

Pointers may be used as dummy arguments in procedures and may be passed as actual arguments to

procedures. In addition, a function result can be a pointer. The following restrictions apply if pointers

are used in procedures:

1. If a procedure has dummy arguments with either the POINTER or TARGET attributes, then the

procedure must have an explicit interface.

2. If a dummy argument is a pointer, then the actual argument passed to the procedure must be a pointer

of the same type, kind, and rank.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 250 |

3. A pointer dummy argument cannot appear in an ELEMENTAL procedure.

It is important to be careful when passing pointers to procedures. As programs get larger and more

flexible, we will often get to a situation where pointers are allocated in one procedure, used in others,

and finally deallocated and nullified in yet another. In such a complex program, it is very easy to make

errors such as attempting to work with disassociated pointers, or allocating new arrays with pointers that

are already in use. It is very important that the status results be checked for all ALLOCATE and

DEALLOCATE statements, and that the status of pointers be checked using the ASSOCIATED

function. When a pointer is used to pass data to a procedure, we automatically know the type of the data

associated with the pointer from the type of the pointer itself. If the pointer points to an array, we will

know the rank of the array, but not its extent or size. If we need to know the extent or size of the array,

then we can use the intrinsic functions LBOUND and UBOUND to determine the bounds of each

dimension of the array.

ptr1 = 0

ptr1(3) = 17

ptr2 => ptr1

DEALLOCATE (ptr1)

WRITE (*,*) ptr2

12. TYPE mytype

 INTEGER, DIMENSION(:), POINTER :: array

END TYPE

TYPE (mytype), DIMENSION(10) :: p

INTEGER :: i, istat

DO i = 1, 10

 ALLOCATE (p(i).array(10), STAT=istat)

 DO j = 1, 10

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 251 |

 p(i)%array(j) = 10*(i-1) + j

 END DO

END DO

WRITE (*,'(10I4)') p(4).array

WRITE (*,'(10I4)') p(7).array(1)

9.9.1 Using the INTENT Attribute with Pointers

If the INTENT attribute appears on a pointer dummy argument, it refers to the pointer and not to its

target. Thus, if a subroutine has the following declaration

SUBROUTINE test(xval)

REAL,POINTER,DIMENSION(:),INTENT(IN) :: xval

...

then the pointer xval cannot be allocated, deallocated, or reassigned within the subroutine. However, the

contents of the pointer’s target can be changed. Therefore, the statement

xval(90:100) = -2.

would be legal within this subroutine if the target of the pointer has at least 100

elements.

9.9.2 Pointer-Valued Functions

It is also possible for a function to return a pointer value. If a function is to return a pointer, then the

RESULT clause must be used in the function definition, and the RESULT variable must be declared to

be a pointer.

Example

A pointer-valued function.

FUNCTION every_fifth (ptr_array) RESULT (ptr_fifth)

!

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 252 |

! Purpose:

! To produce a pointer to every fifth element in an

! input rank one array.

!

!

IMPLICIT NONE

! Data dictionary: declare calling parameter types & definitions

INTEGER, DIMENSION(:), POINTER :: ptr_array

INTEGER, DIMENSION(:), POINTER :: ptr_fifth

! Data dictionary: declare local variable types & definitions

INTEGER :: low ! Array lower bound

INTEGER :: high ! Array upper bound

low = LBOUND(ptr_array,1)

high = UBOUND(ptr_array,1)

ptr_fifth =>ptr_array(low:high:5)

END FUNCTION every_fifth

A pointer-valued function must always have an explicit interface in any procedure that uses it. The

explicit interface may be specified by an interface or by placing the function in a module and then using

the module in the procedure. Once the function is defined, it can be used any place that a pointer

expression can be used. For example, it can be used on the right-hand side of a pointer assignment

statement as follows:

ptr_2 =>every_fifth(ptr_1)

The function can also be used in a location where an integer array is expected. In that case, the pointer

returned by the function will automatically be dereferenced, and the values pointed to will be used.

Thus, the following statement is legal, and will print out

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 253 |

the values pointed to by the pointer returned from the function.

WRITE (*,*) every_fifth(ptr_1)

As with any function, a pointer-valued function cannot be used on the left-hand side of an assignment

statement.

Check Your Progress B:

Fill in the blanks:

1. Pointer can point to an array as well as a ……………..

2. The most powerful feature of pointer is to …………………..

3. User can define own type called ……………

9.10 PROCEDURE POINTERS

It is also possible for a Fortran pointer to refer to a procedure instead of a variable or array. A procedure

pointer is declared by the statement:

PROCEDURE (proc), POINTER :: p => NULL()

This statement declares a pointer to a procedure that has the same calling sequence as procedure proc,

which must have an explicit interface. Once a procedure pointer is declared, a procedure can be

assigned to it in the same

fashion as for variables or arrays. For example, suppose that subroutine sub1 has an explicit interface.

Then a pointer to sub1 could be declared as

PROCEDURE (sub1), POINTER :: p => NULL()

and the following assignment would be legal

p => sub1

After such an assignment, the following two subroutine calls are identical, producing exactly the same

results.

CALL sub1(a, b, c)

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 254 |

CALL p(a, b, c)

Note that this pointer will work for any subroutine that has the same interface as sub1. For example,

suppose that subroutines sub1 and sub2 both have the same interface (number, sequence, type, and

intent of calling parameters). Then the first call to p below would call sub1 and the second one would

call sub2.

p => sub1

CALL p(a, b, c)

p => sub2

CALL p(a, b, c)

This program declares three functions with the same signature in a module so that they have an explicit

interface. The main program declares a procedure pointer of type func1, and it is useable with any

function having the same signature as func1. The program assigns a function to the pointer based on

user selection, and then evaluates the function using the pointer.

EXAMPLE

A program to store a database of names and phone numbers in a binary tree structure, and to

retrieve a selected item from that tree.

MODULE test_functions

!

! Purpose:

! Module containing test functions. The module creates

! an explicit interface for the functions.

(continued)

!

!

IMPLICIT NONE

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 255 |

CONTAINS

 ! All of the following functions have the same signature,

 ! and they have an explicit interface because they are

 ! contained in a module.

 REAL FUNCTION func1(x)

 IMPLICIT NONE

REAL,INTENT(IN) :: x

 func1 = x**2 - 2*x + 4

 END FUNCTION func1

 REAL FUNCTION func2(x)

 IMPLICIT NONE

REAL,INTENT(IN) :: x

 func2 = exp(-x/5) * sin(2*x)

 END FUNCTION func2

 REAL FUNCTION func3(x)

 IMPLICIT NONE

REAL,INTENT(IN) :: x

 func3 = cos(x)

 END FUNCTION func3

END MODULE test_functions

PROGRAM test_function_pointers

!

! Purpose:

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 256 |

! To test Fortran procedure pointers. The function

! point will work with any procedure with an explicit

! interface that has same signature as "func1".

!

!

USE test_functions

IMPLICIT NONE

! Declare variables

INTEGER :: index ! Selection index

PROCEDURE(func1), POINTER :: p ! Function pointer

REAL :: x ! Calling argument

(concluded)

! Get the name of the file containing the input data.

WRITE (*,*) 'Select a function to associate with the pointer:'

WRITE (*,*) ' 1: func1'

WRITE (*,*) ' 2: func2'

WRITE (*,*) ' 3: func3'

READ (*,*) index

! Is it valid?

IF ((index < 1) .OR. (index > 3)) THEN

 WRITE (*,*) 'Invalid selection made!'

 ERROR STOP 'Bad index'

ELSE

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 257 |

 ! Associate the pointer

 SELECT CASE (index)

 CASE (1)

 WRITE (*,*) 'func1 selected...'

 p => func1

 CASE (2)

 WRITE (*,*) 'func2 selected...'

 p => func2

 CASE (3)

 WRITE (*,*) 'func3 selected...'

 p => func3

 END SELECT

 ! Execute the function

 WRITE (*,'(A)',ADVANCE='NO') 'Enter x: '

 READ (*,*) x

 WRITE (*,'(A,F13.6)') 'f(x) = ', p(x)

END IF

END PROGRAM test_function_pointers

When this program is executed, the results are:

 C:\book\fortran>test_function_pointers

 Select a function to associate with the pointer:

 1: func1

 2: func2

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 258 |

 3: func3

3

 func3 selected...

Enter x: 3.14159

f(x) = -1.000000

Since cos(π) = −1, this is the correct answer.

Procedure pointers are very useful in Fortran programs, because a user can associate a specific

procedure with a defined data type. For example, the following type declaration includes a pointer to a

procedure that can invert the matrix declared in the derived data type.

TYPE matrix(m,n)

 INTEGER, LEN :: m,n

REAL :: element(m,n)

 PROCEDURE (lu), POINTER :: invert

END TYPE

:

TYPE(m=10,n=10) :: a

:

CALL a%invert(...)

Note that this is different from binding the procedure to the data type in that binding is permanent, while

the procedure pointed to by the function pointer can change during the course of program execution.

9.11 SUMMARY:

In Fortran, a pointer is a data object that has more functionalities than just storing the memory address.

It contains more information about a particular object, like type, rank, extents, and memory address. A

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 259 |

pointer to an array must declare the type and the rank of the array that it will point to, but does not

declare the extent in each dimension. Users can define their own data type called derived type.

9.12 KEYWORD:

Pointers: Pointer is a data object that has more functionalities than just storing the memory address.

Derived type: Users can define their own data type.

Pointer with Array: A pointer to an array must declare the type and the rank of the array that it will

point to, but does not declare the extent in each dimension.

Answer to check your Progress

Check Your Progress A

1 Pointer

2 data object

3 Allocate

Check Your Progress B

1 scalar

2 create dynamic variables

3 derived type

9.13 SELF ASSESSMENT QUESTION:

1)What is Pointer?

2)Describe how to define and allocate space to the Pointer?

3) Describe how to dynamically allocate memory to pointers variables?

4) Explain derived data types in brief?

9.14 SUGGESTED READINGS

1. Computer Programming in Fortran 90 and 95 by V Rajaraman

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 260 |

2. Introduction to Programming with Fortran by Chivers, lan, Sleightholme, Jane

3. Fortran For Scientists and Engineers by Stephen J. Chapman, Mcgraw-Hill

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 261 |

Class : M.Sc. (Mathematics) Course Code : MAL 516

Subject : Programming with FORTRAN (Theory)

CHAPTER-10

FILE PROCESSING

STRUCTURE

10.0 Objectives

10.1 File Introduction

10.2 Opening and closing File

 10.2.1 Open Statement

 10.2.2 Close Statement

 10.2.3 Read & Write to Disk File

 10.2.4 IOSTAT= and IOMSG= Clauses in the READ Statement

 10.2.5 File Positioning

10.3 Reading from and Writing into the File

10.4 Summary

10.5 Keywords

10.6 Self-Assessment Questions

10.7 Suggested Readings

10.0 Objective:

After reading this lesson, you should be able to:

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 262 |

1) Understand how to open and close the file.

2) Understand how to read and write into the file.

3) Understand how to declare a pointer variable.

4) Understand how to allocate memory to the pointers.

10.1 File Introduction:

Fortran allows you to read data from, and write data into files. The programs that we have written up to

now have involved relatively small amounts of input and output data. We have typed in the input data

from the keyboard each time that a program has been run, and the output data has gone directly to a

terminal or printer. This is acceptable for small data sets, but it rapidly becomes prohibitive when

working with large volumes of data. Imagine having to type in 100,000 input valueseach time a

program is run! Such a process would be both time consuming and prone to typing errors. We need a

convenient way to read in and write out large data sets, and to be able to use them repeatedly without

retyping. Fortunately, computers have a standard structure for holding data that we will be able to use in

our programs. This structure is called a file. A file consists of many lines of data that are related to each

other, and that can be accessed as a unit. Each line of information in a file is called a record. Fortran can

read information from a file or write information to a file one record at a time. The files on a computer

can be stored on various types of devices, which are collectively know as secondary memory. (The

computer’s RAM is its primary memory.) Secondary memory is slower than the computer’s main

memory, but it still allows relatively quick access to the data. Common secondary storage devices

include hard disk drives, USB memory sticks, and CDs or DVDs. In the early days of computers,

magnetic tapes were the most common type of secondary storage device. Computer magnetic tapes

store data in a manner similar to the audio cassette tapes that were used to play music. Like them,

computer magnetic tapes must be read (or “played”) in order from the beginning of the tape to the end

of it. When we read data in consecutive order one record after another in this manner, we are using

sequential access. Other devices such as hard disks have the ability to jump from one record to another

anywhere within a file. When we jump freely from one record to another following no specific order,

we are using direct access. For historical reasons, sequential access is the default access technique in

Fortran, even if we are working with devices capable of direct access. To use files within a Fortran

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 263 |

program, we will need some way to select the desired file and to read from or write to it. Fortunately,

Fortran has a wonderfully flexible method to read a file and write results into files, whether they are on

disk, magnetic tape, or some other device attached to the computer. This mechanism is known as the

input/output unit (i/o unit, sometimes called a “logical unit”, or simply a “unit”). The i/o unit

corresponds to the first asterisk in the READ (*,*) and WRITE (*,*) statements. If that asterisk is

replaced by an i/o unit number, then the corresponding read or write will be to the device assigned to

that unit instead of to the standard input or output device. The statements to read or write any file or

device attached to the computer are exactly the same except for the i/o unit number in the first position,

so we already know most of what we need to know to use file i/o. An i/o unit number must be of type

INTEGER. Several Fortran statements may be used to control disk file input and output.

Fortran file control statements

I/O statement Function

OPEN Associate a specific disk file with a specific i/o unit number.

CLOSE End the association of a specific disk file with a specific i/o unit number.

READ Read data from a specified i/o unit number.

WRITE Write data to a specified i/o unit number.

REWIND Move to the beginning of a file.

BACKSPACE Move back one record in a file.

I/O unit numbers are assigned to disk files or devices using the OPEN statement, and detached from

them using the CLOSE statement. Once a file is attached to an i/o unit using the OPEN statement, we

can read and write in exactly the same manner that we have already learned. When we are through with

the file, the CLOSE statement closes the file and releases the i/o unit to be assigned to some other file.

The REWIND and BACKSPACE statements may be used to change the current reading or writing

position in a file while it is open. Certain unit numbers are pre-defined to be connected to certain input

or output devices, so that we don’t need an OPEN statement to use these devices. These predefined

units vary from processor to processor.5 Typically, i/o unit 5 is pre-defined to be the standard input

device for your program (i.e., the keyboard if you are running at a terminal, or the input batch file if you

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 264 |

are running in batch mode). Similarly, i/o unit 6 is usually pre-defined to be the standard output device

for your program (the screen if you are running at a terminal, or the line printer if you are running in

batch mode). These assignments date back to the early days of Fortran on IBM computers, so they have

been copied by most other vendors in their Fortran compilers. Another common association is i/o unit 0

for the standard error device for your program. This assignment goes back to the C language and Unix-

based computers. However, you cannot count on any of these associations always being true for every

processor. If you need to read from and write to the standard devices, always use the asterisk instead of

the standard unit number for that device. The asterisk is guaranteed to work correctly on any computer

system

10.2 Opening and Closing Files

Before using a file you must open the file. The open command is used to open files for reading or

writing. The simplest form of the command is −

open (unit = number, file = "name").

However, the open statement may have a general form −

open (list-of-specifiers)

10.2.1 Open Statement:

The OPEN statement associates a file with a given i/o unit number. Its form is

OPEN (specified_list)

where specified_list contains a series of clauses specifying the i/o unit number, the file name, and

information about how to access the file. The clauses in the list are separated by commas. The full list of

possible clauses in the OPEN statement will be postponed until. For now, we will introduce only the six

most important items from the list. They are

S.no Specifier Description Syntax

1. UNIT UNIT clause indicating the

i/o unit number to

associate with this file

UNIT=int-expr

where int_expr can be a nonnegative

integer value.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 265 |

2. FILE FILE clause specifying the

name of the file to be

opened.

FILE= char_expr

 where char_expr is a character value

containing name of the file to be opened.

3. STATUS STATUS clause

specifying the status of the

file to be opened.

STATUS= char_expr

 where char_expr is one of the following:

'OLD', 'NEW', 'REPLACE', 'SCRATCH',

or 'UNKNOWN'.

4. ACTION ACTION clause

specifying whether a file is

to be opened for reading

only, for

writing only, or for both

reading and writing.

ACTION= char_expr

 where char_expr is one of the following:

'READ', 'WRITE', or 'READWRITE'. If

no action is specified, the file is opened

for both reading and writing.

5. IOSTAT IOSTAT clause specifying

the name of an integer

variable in which the

status

of the open operation can

be returned.

IOSTAT= int_var

where int_var is an integer variable. If the

OPEN statement is successful, a 0 will be

returned in the integer variable. If it is not

successful, a positive number

corresponding to a system error message

will be returned in the variable. The

system error messages vary from

processor to processor, but a zero always

means success.

6. IOMSG IOMSG clause specifying

the name of a character

variable that will contain a

message if an error occurs.

IOMSG= chart_var

 where char_var is a character variable. If

the OPEN statement is successful, the

contents of the character variable will be

unchanged. If it is not successful, a

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 266 |

descriptive error message will be returned

in this string correct OPEN statements are

shown below.

1.Opening a File for Input

The statement below opens a file named EXAMPLE.DAT and attaches it to i/o

unit 8.

INTEGER :: ierror

OPEN (UNIT=8, FILE='EXAMPLE.DAT', STATUS='OLD', ACTION='READ', &

 IOSTAT=ierror, IOMSG=err_string)

The STATUS='OLD' clause specifies that the file already exists; if it does not exist, then the OPEN

statement will return an error code in variable ierror, and an error message in character string err_string.

This is the proper form of the OPEN statement for an input file. If we are opening a file to read input

data from, then the file had better be present with data in it! If it is not there, something is obviously

wrong. By checking the returned value in error, we can tell that there is a problem and take appropriate

action.

The ACTION='READ' clause specifies that the file should be read-only. If an attempt is made to write

to the file, an error will occur. This behaviour is appropriate for an input file.

2. Opening a File for Output

INTEGER :: unit, ierror

CHARACTER(len=6) :: filename

unit = 25

filename = 'OUTDAT'

OPEN (UNIT=unit, FILE=filename, STATUS='NEW', ACTION='WRITE', &

 IOSTAT=ierror, IOMSG=err_string)

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 267 |

or

OPEN (UNIT=unit, FILE=filename, STATUS='REPLACE', ACTION='WRITE', &

 IOSTAT=ierror, IOMSG=err_string)

The STATUS='NEW' clause specifies that the file is a new file; if it already exists, then the OPEN

statement will return an error code in variable ierror. This is the proper form of the OPEN statement for

an output file if we want to make sure that we don’t overwrite the data in a file that already exists.

The STATUS='REPLACE' clause specifies that a new file should be opened for output whether a file

by the same name exists or not. If the file already exists, the program will delete it, create a new file,

and open it for output. The old contents of the file will be lost. If it does not exist, the program will

create a new file by that name and open it. This is the proper form of the OPEN statement for an output

file if we want to open the file whether or not a previous file exists with the same name.

The ACTION='WRITE' clause specifies that the file should be write-only. If an attempt is made to read

from the file, an error will occur. This behavior is appropriate for an output file.

3. Opening a Scratch File

OPEN (UNIT=12, STATUS='SCRATCH', IOSTAT=ierror)

A scratch file is a temporary file that is created by the program, and that will be deleted automatically

when the file is closed or when the program terminates. This type of file may be used for saving

intermediate results while a program is running, but it may not be used to save anything that we want to

keep after the program finishes. Notice that no file name is specified in the OPEN statement. In fact, it

is an error to specify a file name with a scratch file. Since no ACTION= clause is included, the file has

been opened for both reading and writing.

9.2.2 CLOSE Statement

The CLOSE statement closes a file and releases the i/o unit number associated with it.

Its form is

CLOSE (close_list)

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 268 |

where close_list must contain a clause specifying the i/o number, and may specify other options that

will be discussed with the advanced i/o material. If no CLOSE statement is included in the program for

a given file, that file will be closed automatically when the program terminates. After a nonscratch file

is closed, it may be reopened at any time using a new OPEN statement. When it is reopened, it may be

associated with the same i/o unit or with a different i/o unit. After the file is closed, the i/o unit that was

associated with it is free

to be reassigned to any other file in a new OPEN statement.

The following table describes the most commonly used specifiers –

Sr.No Specifier & Description

1 [UNIT=] u

The unit number u could be any number in the range 9-99999 and it indicates the

file, you may choose any number but every open file in the program must have a

unique number

2 IOSTAT= ios

It is the I/O status identifier and should be an integer variable. If the open statement

is successful then the ios value returned is zero else a non-zero value.

3 ERR = err

It is a label to which the control jumps in case of any error.

4 FILE = fname

File name, a character string.

5 STATUS = sta

It shows the prior status of the file. A character string and can have one of the three

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 269 |

values NEW, OLD or SCRATCH. A scratch file is created and deleted when

closed or the program ends.

6 ACCESS = acc

It is the file access mode. Can have either of the two values, SEQUENTIAL or

DIRECT. The default is SEQUENTIAL.

7 FORM = frm

It gives the formatting status of the file. Can have either of the two values

FORMATTED or UNFORMATTED. The default is UNFORMATTED

8 RECL = rl

It specifies the length of each record in a direct access file.

After the file has been opened, it is accessed by read and write statements. Once done, it should be

closed using the close statement.

The close statement has the following syntax −

close ([UNIT =]u[,IOSTAT = ios, ERR = err, STATUS = sta])

Please note that the parameters in brackets are optional.

Example

This example demonstrates opening a new file for writing some data into the file.

program outputdata

implicit none

 real, dimension(100) :: x, y

 real, dimension(100) :: p, q

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 270 |

integer :: i

 ! data

 do i=1,100

 x(i) = i * 0.1

 y(i) = sin(x(i)) * (1-cos(x(i)/3.0))

 end do

 ! output data into a file

open(1, file = 'data1.dat', status = 'new')

 do i=1,100

write(1,*) x(i), y(i)

 end do

close(1)

end program outputdata

When the above code is compiled and executed, it creates the file data1.dat and writes the x and y array

values into it. And then closes the file.

10.2.3 READs and WRITEs to Disk Files

Once a file has been connected to an i/o unit via the OPEN statement, it is possible to read from or

write to the file using the same READ and WRITE statements that we have been using. For example,

the statements

OPEN (UNIT=8, FILE='INPUT.DAT',STATUS='OLD',I0STAT=ierror)

READ (8,*) x, y, z

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 271 |

will read the values of variables x, y, and z in free format from the file INPUT.DAT, and the statements

OPEN (UNIT=9, FILE='OUTPUT.DAT',STATUS='REPLACE',IOSTAT=ierror)

WRITE (9,100) x, y, z

100 FORMAT (' X = ', F10.2, ' Y = ', F10.2, ' Z = ', F10.2)

will write the values of variables x, y, and z to the file OUTPUT.DAT in the specified format.

10.2.4 The IOSTAT= and IOMSG= Clauses in the READ Statement

The IOSTAT= and IOMSG= clauses are important additional features that may be added to the READ

statement when working with disk files. The form of the IOSTAT=clause is

IOSTAT= int_var

where int_var is an integer variable. If the READ statement is successful, a 0 will be returned in the

integer variable. If it is not successful due to a file or format error, a positive number corresponding to a

system error message will be returned in the variable. If it is not successful because the end of the input

data file has been reached, a negative number will be returned in the variable.

If an IOMSG= clause is included in a READ statement and the returned i/o status is nonzero, then the

character string returned by the IOMSG= clause will explain in words what went wrong. The program

should be designed to display this message to the user.

If no IOSTAT= clause is present in a READ statement, any attempt to read a line beyond the end of a

file will abort the program. This behaviour is unacceptable in a well-designed program. We often want

to read all of the data from a file until the end is reached, and then perform some sort of processing on

that data. This is where the IOSTAT= clause comes in: If an IOSTAT= clause is present, the program

will not abort on an attempt to read a line beyond the end of a file. Instead, the READ will complete

with the IOSTAT variable set to a negative number. We can then test the value of the variable, and

process the data accordingly.

10.2.5 File Positioning

As we stated previously, ordinary Fortran files are sequential—they are read in order from the first

record in the file to the last record in the file. However, we sometimes need to read a piece of data more

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 272 |

than once, or to process a whole file more than once during a program. How can we skip around within

a sequential file? Fortran provides two statements to help us move around within a sequential file. They

are the BACKSPACE statement, which moves back one record each time it is called, and the REWIND

statement, which restarts the file at its beginning. The forms of these statements are

BACKSPACE (UNIT=unit)

and

REWIND (UNIT=unit)

where unit is the i/o unit number associated with the file that we want to work with.Both statements can

also include IOSTAT= and IOMSG= clauses to detect errors during the backspace or rewind operation

without causing the program to abort.

Example:

Using File Positioning Commands:

We will now illustrate the use of scratch files and file positioning commands in a simple example

problem. Write a program that accepts a series of nonnegative real values and stores them in a scratch

file. After the data is input, the program should ask the user what data record he or she is interested in,

and then recover and display that value from the disk file.

Solution

Since the program is expected to read only positive or zero values, we can use a negative value as a flag

to terminate the input to the program. This program opens a scratch file, and then reads input values

from the user. If a value is nonnegative, it is written to the scratch file. When a negative value is

encountered, the program asks the user for the record to display. It checks to see if a valid record

number was entered. If the record number is valid, it rewinds the file and reads forward to that record

number. Finally, it displays the contents of that record to the user.

Example

Sample program illustrating the use of file positioning commands.

PROGRAM scratch_file

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 273 |

!

! Purpose:

! To illustrate the use of a scratch file and positioning

! commands as follows:

! 1. Read in an arbitrary number of positive or zero

! values, saving them in a scratch file. Stop

! reading when a negative value is encountered.

! 2. Ask the user for a record number to display.

! 3. Rewind the file, get that value, and display it.

!

!

IMPLICIT NONE

! Data dictionary: declare constants

INTEGER, PARAMETER :: LU = 8 ! i/o unit for scratch file

! Data dictionary: declare variable types, definitions, & units

REAL :: data ! Data value stored in a disk file

INTEGER :: icount = 0 ! The number of input data records

INTEGER :: irec ! Record number to recover and display

INTEGER :: j ! Loop index

! Open the scratch file

OPEN (UNIT=LU, STATUS='SCRATCH')

! Prompt user and get input data.

WRITE (*, 100)

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 274 |

100 FORMAT ('Enter positive or zero input values. ',/, &

 'A negative value terminates input.')

! Get the input values, and write them to the scratch file

DO

 WRITE (*, 110) icount + 1 ! Prompt for next value

 110 FORMAT ('Enter sample ',I4,':')

 READ (*,*) data ! Read value

 IF (data< 0.) EXIT ! Exit on negative numbers

icount = icount + 1 ! Valid value: bump count

 WRITE (LU,120) data ! Write data to scratch file

 120 FORMAT (ES16.6)

END DO

! Now we have all of the records. Ask which record to see.

! icount records are in the file.

WRITE (*,130) icount

130 FORMAT ('Which record do you want to see (1 to ',I4, ')? ')

READ (*,*) irec

! Do we have a legal record number? If so, get the record.

! If not, tell the user and stop.

IF ((irec>= 1) .AND. (irec<= icount)) THEN

 ! This is a legal record. Rewind the scratch file.

 REWIND (UNIT=LU)

 ! Read forward to the desired record.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 275 |

 DO j = 1, irec

 READ (LU,*) data

 END DO

 ! Tell user.

 WRITE (*,140) irec, data

 140 FORMAT ('The value of record ', I4, ' is ', ES14.5)

ELSE

 ! We have an illegal record number. Tell user.

 WRITE (*,150) irec

 150 FORMAT ('Illegal record number entered: ', I8)

 ! Close file

CLOSE(LU)

END PROGRAM scratch_file

Let us test the program with valid data:

C:\book\fortran>scratch_file

Enter positive or zero input values.

A negative input value terminates input.

Enter sample 1:

234.

Enter sample 2:

12.34

Enter sample 3:

0.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 276 |

Enter sample 4:

16.

Enter sample 5:

11.235

Enter sample 6:

2.

Enter sample 7:

-1

Which record do you want to see (1 to 6)?

5

The value of record 5 is 1.12350E+01

Next, we should test the program with an invalid record number to see that the error

condition is handled properly.

C:\book\fortran>scratch_file

Enter positive or zero input values.

A negative input value terminates input.

Enter sample 1:

234.

Enter sample 2:

12.34

Enter sample 3:

0.

Enter sample 4:

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 277 |

16.

Enter sample 5:

11.235

Enter sample 6:

2.

Enter sample 7:

-1

Which record do you want to see (1 to 6):

7

Illegal record number entered: 7

The program appears to be functioning correctly.

10.3 Reading from and Writing into a File:

The read and write statements respectively are used for reading from and writing into a file respectively.

They have the following syntax −

read ([UNIT =]u, [FMT =]fmt, IOSTAT = ios, ERR = err, END = s)

write([UNIT =]u, [FMT =]fmt, IOSTAT = ios, ERR = err, END = s)

Most of the specifiers have already been discussed.

The END = s specifier is a statement label where the program jumps, when it reaches end-of-file.

Example

This example demonstrates reading from and writing into a file.

In this program we read from the file, we created in the last example, data1.dat, and display it on screen.

program outputdata

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 278 |

implicit none

 real, dimension(100) :: x, y

 real, dimension(100) :: p, q

integer :: i

 ! data

 do i = 1,100

 x(i) = i * 0.1

 y(i) = sin(x(i)) * (1-cos(x(i)/3.0))

 end do

 ! output data into a file

open(1, file = 'data1.dat', status='new')

 do i = 1,100

write(1,*) x(i), y(i)

 end do

close(1)

 ! opening the file for reading

 open (2, file = 'data1.dat', status = 'old')

 do i = 1,100

read(2,*) p(i), q(i)

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 279 |

 end do

close(2)

 do i = 1,100

write(*,*) p(i), q(i)

 end do

end program outputdata

When the above code is compiled and executed, it produces the following result −

Example:

It is very common to read a large data set into a program from a file, and then to process the data in

some fashion. Often, the program will have no way of knowing in advance just how much data is

present in the file. In that case, the program needs to read the data in a while loop until the end of the

data set is reached, and then must detect that there is no more data to read. Once it has read in all of the

data, the program can process it in whatever manner is required.

Let’s illustrate this process by writing a program that can read in an unknown number of real values

from a disk file, and detect the end of the data in the disk file.

Solution

This program must open the input disk file, and then read the values from it using the

IOSTAT= clause to detect problems. If the IOSTAT variable contains a negative number

after a READ, then the end of the file has been reached. If the IOSTAT variable contains

0 after a READ, then everything was ok. If the IOSTAT variable contains a positive

number after a READ, then a READ error occurred. In this example, the program should

stop if a READ error occurs.

1. State the problem.

The problem may be succinctly stated as follows:

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 280 |

Write a program that can read an unknown number of real values from a

user-specified input data file, detecting the end of the data file as it occurs.

2. Define the inputs and outputs.

The inputs to this program consist of:

(a) The name of the file to be opened.

(b) The data contained in that file.

The outputs from the program will be the input values in the data file. At the end of the file, an

informative message will be written out telling how many valid input values were found.

3. Describe the algorithm.

This pseudocode for this program is

Initialize nvals to 0

Prompt user for file name

Get the name of the input file

OPEN the input file

Check for errors on OPEN

If no OPEN error THEN

 ! Read input data

 WHILE

 READ value

 IF status /= 0 EXIT

nvals ← nvals + 1

WRITE valid data to screen

 END of WHILE

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 281 |

 ! Check to see if the WHILE terminated due to end of file

 ! or READ error

 IF status > 0

 WRITE 'READ error occurred on line', nvals

 ELSE

 WRITE number of valid input values nvals

 END of IF (status> 0)

END of IF (no OPEN error)

END PROGRAM

4. Turn the algorithm into Fortran statements.

Program to read an unknown number of values from a user-specified input disk file.

PROGRAM read_file

!

! Purpose:

! To illustrate how to read an unknown number of values from

! an input data file, detecting both any formatting errors and

! the end of file.

!

! Record of revisions:

!

IMPLICIT NONE

! Data dictionary: declare variable types, definitions, & units

CHARACTER(len=20) :: filename ! Name of file to open

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 282 |

CHARACTER(len=80) :: msg ! Error message

INTEGER :: nvals = 0 ! Number of values read in

INTEGER :: status ! I/O status

REAL :: value ! The real value read in

! Get the file name, and echo it back to the user.

WRITE (*,*) 'Please enter input file name: '

READ (*,*) filename

WRITE (*,1000) filename

1000 FORMAT ('The input file name is: ', A)

! Open the file, and check for errors on open.

OPEN (UNIT=3, FILE=filename, STATUS='OLD', ACTION='READ', &

 IOSTAT=status, IOMSG=msg)

openif: IF (status == 0) THEN

 ! OPEN was ok. Read values.

readloop: DO

 READ (3,*,IOSTAT=status) value ! Get next value

 IF (status /= 0) EXIT ! EXIT if not valid.

nvals = nvals + 1 ! Valid: increase count

 WRITE (*,1010) nvals, value ! Echo to screen

 1010 FORMAT ('Line ', I6, ': Value = ',F10.4)

 END DO readloop

 ! The WHILE loop has terminated. Was it because of a READ

 ! error or because of the end of the input file?

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 283 |

readif: IF (status> 0) THEN ! a READ error occurred. Tell user.

(concluded)

 WRITE (*,1020) nvals + 1

 1020 FORMAT ('An error occurred reading line ', I6)

ELSE ! the end of the data was reached. Tell user.

 WRITE (*,1030) nvals

 1030 FORMAT ('End of file reached. There were ', I6, &

 ' values in the file.')

 END IF readif

ELSE openif

 WRITE (*,1040) status

 1040 FORMAT ('Error opening file: IOSTAT = ', I6)

 WRITE (*,1050) TRIM(msg)

 1050 FORMAT (A)

END IF openif

! Close file

CLOSE (UNIT=3)

END PROGRAM read_file

Note that the input file is opened with STATUS='OLD', since we are reading from the file, and the input

data must already exist before the program is executed.

5. Test the program.

To test this program, we will create two input files, one with valid data and one with an input data error.

We will run the program with both input files, and verify that it works correctly both for valid data and

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 284 |

for data containing input errors. Also, we will run the program with an invalid file name to show that it

can properly handle missing input files.

The valid input file is called READ1.DAT. It contains the following lines:

-17.0

30.001

1.0

12000.

-0.012

The invalid input file is called READ2.DAT. It contains the following lines:

-17.0

30.001

ABCDEF

12000.

-0.012

Running these files through the program yields the following results:

C:\book\fortran>read_file

Please enter input file name:

read1.dat

The input file name is: read1.dat

Line 1: Value = -17.0000

Line 2: Value = 30.0010

Line 3: Value = 1.0000

Line 4: Value = 12000.0000

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 285 |

Line 5: Value = -.0120

End of file reached. There were 5 values in the file.

C:\book\fortran>read_file

Please enter input file name:

read2.dat

The input file name is: read2.dat

Line 1: Value = -17.0000

Line 2: Value = 30.0010

An error occurred reading line 3

Finally, let’s test the program with an invalid input file name.

C:\book\fortran>read_file

Please enter input file name:

xxx

The input file name is: xxx

Error opening file: IOSTAT = 29

file not found, unit 3, file C:\Data\book\fortran\xxx

The number of the IOSTAT error reported by this program will vary from processor to processor, but it

will always be positive. You must consult a listing of the runtime error codes for your particular

compiler to find the exact meaning of the error code that your computer reports. For the Fortran

compiler used here, IOSTAT = 29 means “File not found.” Note that the error message returned from

the IOMSG clause is clear to the user, without having to look up the meaning of status 29!This program

correctly read all of the values in the input file, and detected the end of the data set when it occurred.

Check your Progress A

1 Before using a file you must …….. the file.

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 286 |

2 Open command is used to open files for ………………...

3 ……………… statement closes a file and releases the i/o unit number associated with it.

10.4 SUMMARY:

Fortran allow you to read and write data from the files. Before reading and writing into the file we must

have to open the file. If the file is not opened we cannot read and write into the file. Once the reading

and writing operation are done file should be closed. Computers have a standard structure for holding

data that we will be able to use in our programs. This structure is called a file. A file consists of many

lines of data that are related to each other, and that can be accessed as a unit. Each line of information in

a file is called a record. Fortran can read information from a file or write information to a file one record

at a time.

10.5 KEYWORD:

File: File allow you to store the data into the file.

Open/ Close: Before inserting the data we must have to open the file after adding or removing the data

we must have to close it.

Read/ Write: We have to open a file either for reading or either for writing purpose.

Answer to check your Progress

Check Your Progress A

1 OPEN

2 reading/ writing

3 CLOSE

10.6 SELF ASSESSMENT QUESTION:

1)What is File?

2) How to open and close a file?

3) How to read and write into a file?

Programming with FORTRAN (Theory) MAL-516

 DDE, GJUS&T, Hisar 287 |

10.7 SUGGESTED READINGS

1. Computer Programming in Fortran 90 and 95 by V Rajaraman

2. Introduction to Programming with Fortran by Chivers, lan, Sleightholme, Jane

3. Fortran For Scientists and Engineers by Stephen J. Chapman, Mcgraw-Hill

